
Sun Micro
4150 Net
Santa Cla
U.S.A. 65

Part No. 8xx
Release 1.0
Part No: 950
Revision: Dr
systems, Inc.
work Circle
ra, CA 95054
0-960-1300

UltraSPARC T2™ Supplement
to the UltraSPARC Architecture 2007

Draft D1.4.2, 01 Aug 2007

Privilege Levels: Privileged
and Nonprivileged

Distribution: Public
-xxxx-xx
, 2002
-5556-01
aft 1.4.2, 01 Aug 2007

2 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Copyright 2002–2006 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, and VIS are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the
U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002–2006 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 Etats-Unis. Tous droits réservés.

Des parties de ce document est protégé par un copyright 1994 SPARC International, Inc.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo de Sun, Solaris, et VIS sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

4 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Contents

1 UltraSPARC T2 Basics. 1

1.1 Background . 1
1.2 UltraSPARC T2 Overview . 3
1.3 UltraSPARC T2 Components . 3

1.3.1 SPARC Physical Core . 3
1.3.2 L2 Cache . 4
1.3.3 Memory Controller Unit (MCU) . 4
1.3.4 Noncacheable Unit (NCU) . 4
1.3.5 System Interface Unit (SIU) . 4
1.3.6 SSI ROM Interface (SSI) . 5

2 Data Formats. 7

3 Registers . 9

3.1 Ancillary State Registers (ASRs) . 9
3.1.1 Tick Register (TICK) . 10
3.1.2 Program Counter (PC) . 11
3.1.3 Floating-Point State Register (FSR) . 11
3.1.4 General Status Register (GSR) . 11
3.1.5 Software Interrupt Register (SOFTINT) . 11
3.1.6 Tick Compare Register (TICK_CMPR) . 12
3.1.7 System Tick Register (STICK) . 12
3.1.8 System Tick Compare Register (STICK_CMPR) 13

3.2 Privileged PR State Registers . 13
3.2.1 Trap State Register (TSTATE) . 14
3.2.2 Processor State Register (PSTATE) . 15
3.2.3 Trap Level Register (TL) . 16
3.2.4 Current Window Pointer (CWP) Register 16
3.2.5 Global Level Register (GL) . 16

4 Instruction Format . 17

5 Instruction Definitions . 19
1

5.1 Instruction Set Summary . 19
5.2 UltraSPARC T2-Specific Instructions . 25
5.3 Block Load and Store Instructions . 25

6 Traps . 31

6.1 Trap Levels . 31
6.2 Trap Behavior . 31
6.3 Trap Masking. 33

7 Interrupt Handling . 37

7.1 CPU Interrupt Registers. 37
7.1.1 Interrupt Queue Registers . 37

8 Memory Models . 41

8.1 Supported Memory Models . 42
8.1.1 TSO . 42
8.1.2 RMO . 42

9 Address Spaces and ASIs . 45

9.1 Address Spaces . 45
9.1.1 48-bit Virtual and Real Address Spaces . 45

9.2 Alternate Address Spaces . 47
9.2.1 ASI_REAL, ASI_REAL_LITTLE, ASI_REAL_IO, and

ASI_REAL_IO_LITTLE 53
9.2.2 ASI_SCRATCHPAD . 53

10 Performance Instrumentation . 55

10.1 SPARC Performance Control Register . 55
10.2 SPARC Performance Instrumentation Counter. 60

11 Implementation Dependencies . 63

11.1 SPARC V9 General Information . 63
11.1.1 Level-2 Compliance (Impdep #1). 63
11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP 63
11.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115) 63
11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44) 64
11.1.5 Secure Software . 64
11.1.6 Operation in Nonprivileged Mode with TL > 0 64
11.1.7 Address Masking (Impdep #125). 64

11.2 SPARC V9 Integer Operations. 65
11.2.1 Integer Register File and Window Control Registers (Impdep #2) 65
11.2.2 Clean Window Handling (Impdep #102) . 65
11.2.3 Integer Multiply and Divide . 65
11.2.4 MULScc . 65

11.3 SPARC V9 Floating-Point Operations . 66
11.3.1 Subnormal Operands and Results; Nonstandard Operation 66
11.3.2 Overflow, Underflow, and Inexact Traps (Impdep #3, 55) 66
2 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

11.3.3 Quad-Precision Floating-Point Operations (Impdep #3) 67
11.3.4 Floating-Point Upper and Lower Dirty Bits in FPRS Register . . 67
11.3.5 Floating-Point Status Register (FSR) (Impdep #13, 19, 22, 23, 24) 68

11.4 SPARC V9 Memory-Related Operations . 68
11.4.1 Load/Store Alternate Address Space (Impdep #5, 29, 30) 68
11.4.2 Read/Write ASR (Impdep #6, 7, 8, 9, 47, 48) 68
11.4.3 MMU Implementation (Impdep #41) . 69
11.4.4 FLUSH and Self-Modifying Code (Impdep #122) 69
11.4.5 PREFETCH{A} (Impdep #103, 117) . 69
11.4.6 LDD/STD Handling (Impdep #107, 108) . 70
11.4.7 FP mem_address_not_aligned (Impdep #109, 110, 111, 112) 70
11.4.8 Supported Memory Models (Impdep #113, 121) 70
11.4.9 Implicit ASI When TL > 0 (Impdep #124) . 71

11.5 Non-SPARC V9 Extensions . 71
11.5.1 Cache Subsystem . 71
11.5.2 Block Memory Operations . 71
11.5.3 Partial Stores. 71
11.5.4 Short Floating-Point Loads and Stores . 71
11.5.5 Load Twin Extended Word. 71
11.5.6 UltraSPARC T2 Instruction Set Extensions (Impdep #106) 72
11.5.7 Performance Instrumentation . 72

12 Memory Management Unit . 73

12.1 Translation Table Entry (TTE) . 73
12.2 Translation Storage Buffer (TSB). 75
12.3 MMU-Related Faults and Traps . 76

12.3.1 IAE_privilege_violation Trap. 76
12.3.2 IAE_nfo_page Trap . 76
12.3.3 instruction_address_range Trap . 76
12.3.4 instruction_real_range Trap . 76
12.3.5 DAE_privilege_violation Trap . 76
12.3.6 DAE_side_effect_page Trap. 77
12.3.7 DAE_nc_page Trap . 77
12.3.8 DAE_invalid_asi Trap . 77
12.3.9 DAE_nfo_page Trap . 77
12.3.10 privileged_action Trap . 77
12.3.11 *_mem_address_not_aligned Traps . 77

12.4 MMU Operation Summary . 78
12.5 Translation . 80

12.5.1 Instruction Translation . 80
12.5.1.1 Instruction Prefetching. 80

12.5.2 Data Translation. 80
12.6 Compliance With the SPARC V9 Annex F. 83
12.7 MMU Internal Registers and ASI Operations . 84

12.7.1 Accessing MMU Registers . 84
12.7.2 Context Registers . 85
• 3

A Programming Guidelines . 87

A.1 Multithreading . 87
A.2 Instruction Latency . 88

B IEEE 754 Floating-Point Support . 97

B.1 Special Operand Handling . 97
B.1.1 Infinity Arithmetic. 98

B.1.1.1 One Infinity Operand Arithmetic 98
B.1.1.2 Two Infinity Operand Arithmetic 101

B.1.2 Zero Arithmetic . 103
B.1.3 NaN Arithmetic . 104
B.1.4 Special Inexact Exceptions . 105

B.2 Subnormal Handling . 106
B.2.1 One or Both Subnormal Operands . 110
B.2.2 Normal Operand(s) Giving Subnormal Result 113

C Differences From UltraSPARC T1. 115

C.1 General Architectural and Microarchitectural Differences 115
C.2 ISA Differences . 115
C.3 MMU Differences . 116
C.4 Performance Instrumentation Differences . 117

D Caches and Cache Coherency . 119

D.1 Cache and Memory Interactions . 119
D.2 Cache Flushing . 119

D.2.1 Displacement Flushing . 120
D.2.2 Memory Accesses and Cacheability . 120
D.2.3 Coherence Domains . 120

D.2.3.1 Cacheable Accesses. 121
D.2.3.2 Noncacheable and Side-Effect Accesses. 121
D.2.3.3 Global Visibility and Memory Ordering 122

D.2.4 Memory Synchronization: MEMBAR and FLUSH 123
D.2.4.1 MEMBAR #LoadLoad . 123
D.2.4.2 MEMBAR #StoreLoad . 123
D.2.4.3 MEMBAR #LoadStore . 123
D.2.4.4 MEMBAR #StoreStore and STBAR 123
D.2.4.5 MEMBAR #Lookaside . 124
D.2.4.6 MEMBAR #MemIssue . 124
D.2.4.7 MEMBAR #Sync (Issue Barrier). 124
D.2.4.8 Self-Modifying Code (FLUSH) 124

D.2.5 Atomic Operations . 125
D.2.5.1 SWAP Instruction . 125
D.2.5.2 LDSTUB Instruction . 126
D.2.5.3 Compare and Swap (CASX) Instruction 126

D.2.6 Nonfaulting Load . 126
4 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

E Glossary. 127

F Bibliography. 129

Index . 131
• 5

6 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 1

UltraSPARC T2 Basics

1.1 Background
UltraSPARC T2 is the follow-on chip multi-threaded (CMT) processor to the highly
successful UltraSPARC T1 processor. The UltraSPARC T1 product line fully
implements Sun’s Throughput Computing initiative for the horizontal system space.
Throughput Computing is a technique that takes advantage of the thread-level
parallelism that is present in most commercial workloads. Unlike desktop
workloads, which often have a small number of threads concurrently running, most
commercial workloads achieve their scalability by employing large pools of
concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these processors by a combination of extremely
deep pipelines (over 20 stages in Pentium 4) and by executing multiple instructions
in parallel (referred to as instruction-level parallelism or ILP). The basic tenet behind
Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize
their underlying hardware very efficiently. For many commercial workloads, the
processor will be idle most of the time waiting on memory, and even when it is
executing it will often be able to only utilize a small fraction of its wide execution
width. So rather than building a large and complex ILP processor that sits idle most
of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with
1

multiple strands per processor, allows very high performance for highly threaded
commercial applications. This approach is called thread-level parallelism (TLP), and
the difference between TLP and ILP is shown in the FIGURE 1-1.

FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same processor, and multiple processors run their strands in parallel.
In the ideal case, shown in FIGURE 1-1, memory latency can be completely
overlapped with execution of other strands. In contrast, instruction-level parallelism
simply shortens the time to execute instructions and does not help much in
overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP processors of
today are the evolutionary outgrowth from a time when the processor was the
bottleneck in delivering good performance. With processors capable of multiple GHz
clocking, the performance bottleneck has shifted to the memory and I/O
subsystems, and TLP has an obvious advantage over ILP for tolerating the large I/O
and memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one disadvantage
to employing TLP over ILP is that execution of a single thread will be slower on the
TLP processor than an ILP processor. With processors running well over a GHz, a
strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.
1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this

overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

Strand 1

Strand 2

Strand 3

Strand 4

Executing Stalled on Memory

TLP

ILP
Single strand
executing two
instructions per
cycle
2 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

1.2 UltraSPARC T2 Overview
UltraSPARC T2 is a single chip multi-threaded (CMT) processor. UltraSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are hard-
partitioned into two groups of four, and the four strands within a group share a
single integer pipeline. While all eight strands run simultaneously, at any given time
at most two strands will be active in the physical core, and those two strands will be
issuing either a pair of integer pipeline operations, an integer operation and a
floating-point operation, an integer operation and a memory operation, or a floating-
point operation and a memory operation. Strands are switched on a cycle-by-cycle
basis between the available strands within the hard-partitioned group of four using
a least recently issued priority scheme. When a strand encounters a long-latency
event, such as a cache miss, it is marked unavailable and instructions will not be
issued from that strand until the long-latency event is resolved. Execution of the
remaining available strands will continue while the long-latency event of the first
strand is resolved.

Each SPARC physical core has a 16 KB, 8-way associative instruction cache (32-byte
lines), 8 Kbytes, 4-way associative data cache (16-byte lines) that are shared by the
eight strands. The eight SPARC physical cores are connected through a crossbar to
an on-chip unified 4 Mbyte, 16-way associative L2 cache (64-byte lines). The L2
cache is banked eight ways to provide sufficient bandwidth for the eight SPARC
physical cores.

1.3 UltraSPARC T2 Components
This section describes each component in UltraSPARC T2.

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches
• 3

A single floating-point unit is shared by all eight strands within a SPARC physical
core. The shared floating-point unit is sufficient for most commercial applications
which typically have less than 1% of their instructions being a floating-point
operation.

1.3.2 L2 Cache
The L2 cache is banked eight ways. To provide for better partial-die recovery,
UltraSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/2 and
1/4 the total cache size respectively). Bank selection based on address bits 8:6 for 8
banks, 7:6 for 4 banks, and 6 for 2 banks. The cache is 4 Mbytes, 16-way set
associative. The line size is 64 bytes.

1.3.3 Memory Controller Unit (MCU)
UltraSPARC T2 has four MCUs, one for each memory branch with a pair of L2 banks
interacting with exactly one DRAM branch. The branches are interleaved based on
address bits 7:6, and support 1–16 DDR2 DIMMs. Each memory branch is two FBD
channels wide. A branch may use only one of the FBD channels in a reduced power
configuration.

Each DRAM branch operates independently and can have a different memory size
and a different kind of DIMM (for example, a different number of ranks or different
CAS latency). Software should not use address space larger than four times the
lowest memory capacity in a branch because the cache lines are interleaved across
branches. The DRAM controller frequency is the same as that of the DDR (Double
Data Rate) data buses, which is twice the DDR frequency. The FBDIMM links run at
six times the frequency of the DDR data buses.

1.3.4 Noncacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and directs
them to the appropriate block (for example, DMU, CCU). In addition, the NCU
maintains the register status for external interrupts.

1.3.5 System Interface Unit (SIU)
The System Interface Unit connects the DMU and L2 Cache. SIU is the L2 Cache
access point for the Network subsystem. The SIU-L2 Cache interface is also the
ordering point for PCI-Express ordering rule.
4 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

1.3.6 SSI ROM Interface (SSI)
UltraSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an external
field-programmable gate array (FPGA) that interfaces to the boot ROM. In addition,
the SSI supports PIO accesses across the SSI, thus supporting optional Control and
Status registers (CSRs) or other interfaces within the FPGA.
• 5

6 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 2

Data Formats

Data formats supported by UltraSPARC T2 are described in the UltraSPARC
Architecture 2007 specification.
7

8 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 3

Registers

3.1 Ancillary State Registers (ASRs)
This chapter discusses the UltraSPARC T2 ancillary state registers. TABLE 3-1
summarizes and defines these registers.

TABLE 3-1 Summary of UltraSPARC T2 Ancillary State Registers

Address ASR Name Access priv Description

0016 Y RW N Y Register

0116 Reserved — Any access causes a illegal_instruction
trap

0216 CCR RW N Condition Code register

0316 ASI RW N ASI register

0416 TICK RW Y1 TICK register

0516 PC RO2 N Program counter

0616 FPRS RW N Floating-Point Registers Status register

0716–0E16 Reserved - Any access causes an illegal_instruction
trap

0F16 (MEMBAR, STBAR) — N Instruction opcodes only, not an actual
ASR.

1016 PCR RW Y3 Performance counter control register

1116 PIC RW Y4 Performance instrumentation counter

1216 Reserved — Any access causes an illegal_instruction
trap

1316 GSR RW N General Status register

1416 SOFTINT_SET W Y5 Set bit in Soft Interrupt register
9

Notes:

1. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt = 1 causes a
privileged_action trap. An attempted write by privileged software causes an
illegal_instruction trap. An attempted write by nonprivileged software causes a
privileged_opcode trap.

2. An attempted write to this register causes an illegal_instruction trap.

3. An attempted access in nonprivilged mode causes a privileged_opcode trap.

4. An attempted access in nonprivilged mode with PCR.priv = 1 causes a
privileged_action trap.

5. Read accesses cause an illegal_instruction trap. An attempted write access in
nonprivilged mode causes a privileged_opcode trap.

6. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt = 1 causes a
privileged_action trap. A write by privileged or user software causes an
illegal_instruction trap.

3.1.1 Tick Register (TICK)
The TICK register contains two fields: npt and counter. The npt field is replicated per
strand, while the counter field is shared by the eight strands on a physical core.
Hyperprivileged software on any strand can write the TICK register. A write of the
TICK register will update both the shared counter as well as the writing strand’s npt
field (the npt fields for other strands will be unaffected). The counter increments
each processor core clock.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

1516 SOFTINT_CLR W Y5 Clear bit in Soft Interrupt register

1616 SOFTINT RW Y3 Soft Interrupt register

1716 TICK_CMPR RW Y3 TICK Compare register

1816 STICK RW Y6 System Tick register

1916 STICK_CMPR RW Y3 System TICK Compare register

1A16–1F16 Reserved — Any access causes an illegal_instruction
trap

TABLE 3-1 Summary of UltraSPARC T2 Ancillary State Registers (Continued)

Address ASR Name Access priv Description
10 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

3.1.2 Program Counter (PC)
Each strand has a read-only program counter register. The PC contains a 48-bit
virtual address and VA{63:48} is sign-extended from VA{47}. The format of this
register is shown in TABLE 3-2.

3.1.3 Floating-Point State Register (FSR)
Each virtual processor has a Floating-Point State register. This register follows the
UltraSPARC Architecture 2007 specification, with the ver field permanently set to 0
and the qne field permanently set to 0 (UltraSPARC T2 does not support a FQ).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.4 General Status Register (GSR)
Each virtual processor has a nonprivileged general status register (GSR). When
PSTATE.pef or FPRS.fef is zero, accesses to this register cause an fp_disabled trap.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.5 Software Interrupt Register (SOFTINT)
Each virtual processor has a privileged software interrupt register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains three fields: sm, int_level, and tm. Note that while setting the sm (bit 16), tm
(bit 0), and SOFTINT{14} bits all generate interrupt_level_14, these bits are
considered completely independent of each other. Thus a STICK compare will only
set bit 16 and generate interrupt_level_14, not also set bit 14.

TABLE 3-3 specifies how interrupt_level_14 will be shared between SOFTINT writes,
STICK compares, and TICK compares.

TABLE 3-2 Program Counter – PC (ASR 0516)

Bit Field R/W Description

63:48 va_high RO Sign-extended from VA{47}.

47:2 va RO Virtual address contained in the program counter.

1:0 — RO The lower 2 bits of the program counter always read as 0.
• 11

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.6 Tick Compare Register (TICK_CMPR)
Each virtual processor has a privileged Tick compare register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains two fields: int_dis and tick_cmpr. A full 63-bit tick_cmpr field is
implemented in the register, but the bottom seven bits are ignored when comparing
against the TICK counter field. The int_dis bit controls whether a TICK
interrupt_level_14 interrupt is posted in the SOFTINT register when tick_cmpr bits
62:7 match TICK bits 62:7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.7 System Tick Register (STICK)
STICK and TICK are derived from the same register. Writes to STICK affect TICK
and vice versa.

Writes by user-level code to TICK generate a privileged_opcode trap, while writes by
user-level code to STICK generate an illegal_instruction trap.

TABLE 3-3 Sharing of interrupt_level_14

Event tm SOFTINT{14} sm Action

STICK compare when sm = 0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 14

Set sm = 1 when sm = 0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Set SOFTINT{14} = 1 when
SOFTINT{14} = 0.

Unchanged 1 Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

TICK compare when tm = 0 1 Unchanged Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Set tm=1 when tm = 0 1 Unchanged Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Caution To reliably create interrupt_level_14 interrupts using the tick
compare register, software should ensure that the value written
to bits 62:7 of the Tick Compare Register is larger than the value
subsequently read from bits 62:7 of the TICK Register.
12 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Reads of STICK.counter{6:0} are tied to 7F16. This prevents software from setting the
System Tick Compare Register or Hyperprivileged System Tick Compare Register to
a value that should cause a subsequent interrupt but that would not be detected due
to the System Tick Compare Register and Hyperprivileged System Tick Compare
implementation. The compare registers are not continuously compared to STICK,
but are compared periodically (at least once every 128 cycles).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.8 System Tick Compare Register (STICK_CMPR)
Each virtual processor has a privileged System Tick Compare (STICK_CMPR
register. Nonprivileged accesses to this register cause a privileged_opcode trap.
STICK_CMPR contains two fields: int_dis and stick_cmpr. A full 63-bit stick_cmpr
field is implemented in the register, but the bottom seven bits are ignored when
comparing against the STICK counter field. To assist software in reliably creating
interrupt_level_14 interrupts using the system tick compare register, UltraSPARC T2
always returns reads of the system tick register with bits 6:0 set to 7’h7F. This
ensures that if software writes a value to the system tick compare register that is
greater than the value subsequently read from the system tick register that a match
will occur in the future.

The int_dis bit controls whether a STICK interrupt_level_14 interrupt is posted in the
SOFTINT register when stick_cmpr bits 62:7 match STICK bits 62:7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2 Privileged PR State Registers
TABLE 3-4 lists the privileged registers.

TABLE 3-4 Privileged Registers

Register Register Name Access Description

0016 TPC RW Trap PC1

0116 TNPC RW Trap Next PC1

0216 TSTATE RW Trap State

0316 TT RW Trap Type

0416 TICK RW Tick
• 13

3.2.1 Trap State Register (TSTATE)
Each virtual processor has MAXPTL (2) Trap State registers. These registers hold the
state values from the previous trap level. The format of one element the TSTATE
register array (corresponding to one trap level) is shown in TABLE 3-5.

0516 TBA RW Trap Base Address1

0616 PSTATE RW Process State

0716 TL RW Trap Level

0816 PIL RW Processor Interrupt Level

0916 CWP RW Current Window Pointer

0A16 CANSAVE RW Savable Windows

0B16 CANRESTORE RW Restorable Windows

0C16 CLEANWIN RW Clean Windows

0D16 OTHERWIN RW Other Windows

0E16 WSTATE RW Window State

1016 GL RW Global Level

1. UltraSPARC T2 only implements bits 47:0 of the TPC, TNPC, and TBA
registers. Bits 63:48 are always sign-extended from bit 47.

TABLE 3-5 Trap State Register

Bit Field R/W Description

63:42 — RO Reserved.

41:40 gl RW Global level at previous trap level

39:32 ccr RW CCR at previous trap level

31:24 asi RW ASI at previous trap level

23:21 — RO Reserved

20 pstate tct RW PSTATE.tct at previous trap level

19:18 — RO Reserved (corresponds to bits 11:10 of PSTATE)

17 pstate cle RW PSTATE.cle at previous trap level

16 pstate tle RW PSTATE.tle at previous trap level

15:13 — RO Reserved (corresponds to bits 7:5 of PSTATE)

12 pstate pef RW PSTATE.pef at previous trap level

11 pstate am RW PSTATE.am at previous trap level

10 pstate priv RW PSTATE.priv at previous trap level

TABLE 3-4 Privileged Registers

Register Register Name Access Description
14 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.2 Processor State Register (PSTATE)
Each virtual processor has a Processor State register. More details on PSTATE can be
found in the UltraSPARC Architecture 2007 specification. The format of this register
is shown in TABLE 3-6; note that the memory model selection field (mm) mentioned in
UltraSPARC Architecture 2007 is not implemented in UltraSPARC T2.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

9 pstate ie RW PSTATE.ie at previous trap level

8 — RO Reserved (corresponds to bit 0 of PSTATE)

7:3 — RO Reserved

2:0 cwp RW CWP from previous trap level

TABLE 3-6 Processor State Register

Bit Field R/W Description

63:13 — RO Reserved

12 tct RW Trap on control transfer

11:10 — RO Reserved

9 cle RW Current little endian

8 tle RW Trap little endian

7:6 — RO Reserved (mm; not implemented in UltraSPARC T2)

5 — RO Reserved

4 pef RW Enable floating-point

3 am RW Address mask

2 priv RW Privileged mode

1 ie RW Interrupt enable

0 — RO Reserved (was ag)

Implementation
Note

Traps to hyperprivileged space will set PSTATE.priv to 0.
PSTATE.priv could be set to either a 0 or 1 for this case.

Programming
Note

Hyperprivileged changes to translation in delay slots of delayed
control transfer instructions should be avoided.

TABLE 3-5 Trap State Register (Continued)

Bit Field R/W Description
• 15

3.2.3 Trap Level Register (TL)
Each virtual processor has a Trap Level register. Writes to this register saturate at
MAXPTL (2). This saturation is based on bits 2:0 of the write data; bits 63:3 of the write
data are ignored.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.4 Current Window Pointer (CWP) Register
Since N_REG_WINDOWS = 8 on UltraSPARC T2, the CWP register in each virtual
processor is implemented as a 3-bit register.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.5 Global Level Register (GL)
Each virtual processor has a Global Level register, which controls which set of global
register windows is in use. The maximum global level (MAXPGL) for UltraSPARC T2
is 2, so GL is implemented as a 2-bit register on UltraSPARC T2. On a trap, GL is set
to min(GL + 1,MAXPTL).

Writes to the GL register saturate at MAXPTL. This saturation is based on bits 3:0 of
the write data; bits 63:4 of the write data are ignored.

The format of the GL register is shown in TABLE 3-7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Note Hyperprivileged software can set TL to greater than MAXPTL for
user or supervisor code by writing to TSTATE followed by a
DONE/RETRY, etc.

TABLE 3-7 Global Level Register

Bit Field R/W Description

63:2 — RO Reserved

1:0 gl RW Global level.
16 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 4

Instruction Format

Instruction formats are described in the UltraSPARC Architecture 2006 specification.
17

18 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary
The UltraSPARC T2 CPU implements the UltraSPARC Architecture 2007UltraSPARC
Architecture 2007 instruction set.

TABLE 5-1 lists the complete UltraSPARC T2 instruction set supported in hardware.
All instructions are documented in the UltraSPARC Architecture 2007 specification.

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (1 of 6)

Opcode Description

ADD (ADDcc) Add (and modify condition codes)

ADDC (ADDCcc) Add with carry (and modify condition codes)

ALIGNADDRESS Calculate address for misaligned data access

ALIGNADDRESSL Calculate address for misaligned data access (little-endian)

ALLCLEAN Mark all windows as clean

AND (ANDcc) And (and modify condition codes)

ANDN (ANDNcc) And not (and modify condition codes)

ARRAY{8,16,32} 3-D address to blocked byte address conversion

Bicc Branch on integer condition codes

BMASK Writes the GSR.mask field

BPcc Branch on integer condition codes with prediction

BPr Branch on contents of integer register with prediction

BSHUFFLE Permutes bytes as specified by the GSR.mask field

CALL1 Call and link

CASA Compare and swap word in alternate space

CASXA Compare and swap doubleword in alternate space

DONE Return from trap

EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code altering}
19

FABS(s,d) Floating-point absolute value

FADD(s,d) Floating-point add

FALIGNDATA Perform data alignment for misaligned data

FANDNOT1{s} Negated src1 and src2 (single precision)

FANDNOT2{s} Src1 and negated src2 (single precision)

FAND{s} Logical and (single precision)

FBPfcc Branch on floating-point condition codes with prediction

FBfcc Branch on floating-point condition codes

FCMP(s,d) Floating-point compare

FCMPE(s,d) Floating-point compare (exception if unordered)

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2

FDIV(s,d) Floating-point divide

FEXPAND Four 8-bit to 16-bit expand

FiTO(s,d) Convert integer to floating-point

FLUSH Flush instruction memory

FLUSHW Flush register windows

FMOV(s,d) Floating-point move

FMOV(s,d)cc Move floating-point register if condition is satisfied

FMOV(s,d)R Move floating-point register if integer register contents satisfy condition

FMUL(s,d) Floating-point multiply

FMUL8SUX16 Signed upper 8- x 16-bit partitioned product of corresponding components

FMUL8ULX16 Unsigned lower 8- x 16-bit partitioned product of corresponding components

FMUL8X16 8- x 16-bit partitioned product of corresponding components

FMUL8X16AL Signed lower 8- x 16-bit lower α partitioned product of four components

FMUL8X16AU Signed upper 8- x 16-bit lower α partitioned product of four components

FMULD8SUX16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product of components

FMULD8ULX16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned product of components

FNAND{s} Logical nand (single precision)

FNEG(s,d) Floating-point negate

FNOR{s} Logical nor (single precision)

FNOT1{s} Negate (1’s complement) src1 (single precision)

FNOT2{s} Negate (1’s complement) src2 (single precision)

FONE{s} One fill (single precision)

FORNOT1{s} Negated src1 or src2 (single precision)

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (2 of 6)

Opcode Description
20 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

FORNOT2{s} src1 or negated src2 (single precision)

FOR{s} Logical or (single precision)

FPACKFIX Two 32-bit to 16-bit fixed pack

FPACK{16,32} Four 16-bit/two 32-bit pixel pack

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision)

fPMERGE Two 32-bit to 64-bit fixed merge

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision)

FsMULd Floating-point multiply single to double

FSQRT(s,d) Floating-point square root

FSRC1{s} Copy src1 (single precision)

FSRC2{s} Copy src2 (single precision)

F(s,d)TO(s,d) Convert between floating-point formats

F(s,d)TOi Convert floating point to integer

F(s,d)TOx Convert floating point to 64-bit integer

FSUB(s,d) Floating-point subtract

FXNOR{s} Logical xnor (single precision)

FXOR{s} Logical xor (single precision)

FxTO(s,d) Convert 64-bit integer to floating-point

FZERO{s} Zero fill (single precision)

ILLTRAP Illegal instruction

INVALW Mark all windows as CANSAVE

JMPL Jump and link

LDBLOCKF 64-byte block load

LDDF Load double floating-point

LDDFA Load double floating-point from alternate space

LDF Load floating-point

LDFA Load floating-point from alternate space

LDFSR Load floating-point state register lower

LDSB Load signed byte

LDSBA Load signed byte from alternate space

LDSH Load signed halfword

LDSHA Load signed halfword from alternate space

LDSTUB Load-store unsigned byte

LDSTUBA Load-store unsigned byte in alternate space

LDSW Load signed word

LDSWA Load signed word from alternate space

LDTW Load twin words

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (3 of 6)

Opcode Description
• 21

LDTWA Load twin words from alternate space

LDUB Load unsigned byte

LDUBA Load unsigned byte from alternate space

LDUH Load unsigned halfword

LDUHA Load unsigned halfword from alternate space

LDUW Load unsigned word

LDUWA Load unsigned word from alternate space

LDX Load extended

LDXA Load extended from alternate space

LDXFSR Load extended floating-point state register

MEMBAR Memory barrier

MOVcc Move integer register if condition is satisfied

MOVr Move integer register on contents of integer register

MULScc Multiply step (and modify condition codes)

MULX Multiply 64-bit integers

NOP No operation

NORMALW Mark other windows as restorable

OR (ORcc) Inclusive-or (and modify condition codes)

ORN (ORNcc) Inclusive-or not (and modify condition codes)

OTHERW Mark restorable windows as other

PDIST Distance between 8 8-bit components

POPC Population count

PREFETCH Prefetch data

PREFETCHA Prefetch data from alternate space

PST Eight 8-bit/4 16-bit/2 32-bit partial stores

RDASI Read ASI register

RDASR Read ancillary state register

RDCCR Read condition codes register

RDFPRS Read floating-point registers state register

RDPC Read program counter

RDPR Read privileged register

RDTICK Read TICK register

RDY Read Y register

RESTORE Restore caller’s window

RESTORED Window has been restored

RETRY Return from trap and retry

RETURN Return

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (4 of 6)

Opcode Description
22 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

SAVE Save caller’s window

SAVED Window has been saved

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes)

SDIVX 64-bit signed integer divide

SETHI Set high 22 bits of low word of integer register

SIAM Set interval arithmetic mode

SLL Shift left logical

SLLX Shift left logical, extended

SMUL (SMULcc) Signed integer multiply (and modify condition codes)

SRA Shift right arithmetic

SRAX Shift right arithmetic, extended

SRL Shift right logical

SRLX Shift right logical, extended

STB Store byte

STBA Store byte into alternate space

STBAR Store barrier

STBLOCKF 64-byte block store

STDF Store double floating-point

STDFA Store double floating-point into alternate space

STF Store floating-point

STFA Store floating-point into alternate space

STFSR Store floating-point state register

STH Store halfword

STHA Store halfword into alternate space

STTW Store twin words

STTWA Store twin words into alternate space

STW Store word

STWA Store word into alternate space

STX Store extended

STXA Store extended into alternate space

STXFSR Store extended floating-point state register

SUB (SUBcc) Subtract (and modify condition codes)

SUBC (SUBCcc) Subtract with carry (and modify condition codes)

SWAP Swap integer register with memory

SWAPA Swap integer register with memory in alternate space

TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow)

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (5 of 6)

Opcode Description
• 23

TABLE 5-2 lists the SPARC V9 and sun4v instructions that are not directly
implemented in hardware by UltraSPARC T2, and the exception that occurs when an
attempt is made to execute it.

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on overflow)

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if bit 7 is set trap to
hyperprivileged)

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes)

UDIVX 64-bit unsigned integer divide

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes)

WRASI Write ASI register

WRASR Write ancillary state register

WRCCR Write condition codes register

WRFPRS Write floating-point registers state register

WRPR Write privileged register

WRY Write Y register

XNOR (XNORcc) Exclusive-nor (and modify condition codes)

XOR (XORcc) Exclusive-or (and modify condition codes)

1. The PC format saved by the CALL instruction is the same as the format of the PC register spec-
ified in Section 3.1.2, Program Counter (PC), on page 11.

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by UltraSPARC T2
Hardware (1 of 2)

Opcode Description Exception

FABSq Floating-point absolute value quad illegal_instruction

FADDq Floating-point add quad illegal_instruction

FCMPq Floating-point compare quad illegal_instruction

FCMPEq Floating-point compare quad (exception if unordered) illegal_instruction

FDIVq Floating-point divide quad illegal_instruction

FdMULq Floating-point multiply double to quad illegal_instruction

FiTOq Convert integer to quad floating-point illegal_instruction

FMOVq Floating-point move quad illegal_instruction

FMOVqcc Move quad floating-point register if condition is satisfied illegal_instruction

FMOVqr Move quad floating-point register if integer register contents
satisfy condition

illegal_instruction

FMULq Floating-point multiply quad illegal_instruction

FNEGq Floating-point negate quad illegal_instruction

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (6 of 6)

Opcode Description
24 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

5.2 UltraSPARC T2-Specific Instructions

5.3 Block Load and Store Instructions
See the LDBLOCKF and STBLOCKF instruction descriptions in the UltraSPARC
Architecture 2007 specification for the standard definitions of these instructions.

.

A block load to IO space generates a DAE_nc_page trap.

Block stores to IO space are permitted.

Block store commits in UltraSPARC T2 do NOT force the data to be written to
memory as specified in the UltraSPARC Architecture 2007 specification. Block store
commits are implemented the same as block stores in UltraSPARC T2. As with all
stores, block stores and block store commits will maintain coherency with all I-
caches, but will not flush any modified instructions executing down a pipeline.
Flushing those instructions requires the pipeline to execute a FLUSH instruction.

FSQRTq Floating-point square root quad illegal_instruction

F(s,d,q)TO(q) Convert between floating-point formats to quad illegal_instruction

FQTOI Convert quad floating point to integer illegal_instruction

FQTOX Convert quad floating point to 64-bit integer illegal_instruction

FSUBq Floating-point subtract quad illegal_instruction

FxTOq Convert 64-bit integer to floating-point illegal_instruction

IMPDEP1 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

IMPDEP2 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

LDQF Load quad floating-point illegal_instruction

LDQFA Load quad floating-point into alternate space illegal_instruction

STQF Store quad floating-point illegal_instruction

STQFA Store quad floating-point into alternate space illegal_instruction

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by UltraSPARC T2
Hardware (2 of 2)

Opcode Description Exception
• 25

UltraSPARC T2 treats block loads as interlocked with respect to following
instructions. That is, all floating-point registers are updated before any subsequent
instruction issues.

STBLOCKF source data registers are interlocked against completion of previous
instructions, including block load instructions.

LDBLOCKF does not follow memory model ordering with respect to stores. In
particular, read-after-write hazards to overlapping addresses are not detected. The
side-effect bit associated with the access is ignored (see Translation Table Entry (TTE)
on page 73). If ordering with respect to earlier stores is important (for example, a
block load that overlaps previous stores), then there must be an intervening
MEMBAR #StoreLoad or stronger MEMBAR. If the LDBLOCKF overlaps a
previous store and there is no intervening MEMBAR or data reference, the
LDBLOCKF may return data from before or after the store.

STBLOCKF does not follow memory model ordering with respect to loads, previous
block stores, or subsequent stores. (UltraSPARC T2 orders block stores with respect
to previous nonblock stores). In particular, read-after-write hazards to overlapping
addresses are not detected. The side-effects bit associated with the access is ignored.
If ordering with respect to later loads is important then there must be an intervening
MEMBAR instruction. If the STBLOCKF overlaps a later load and there is no
intervening MEMBAR #StoreLoad instruction, the contents of the block are
undefined.

Notes If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
destination register number rd is specified which is not a
multiple of 8 (a misaligned rd), UltraSPARC T2 generates an
illegal_instruction exception (impl. dep. #255-U3-Cs10).

If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
memory address is specified with less than 64-byte alignment,
UltraSPARC T2 generates a mem_address_not_aligned
exception (impl. dep. #256-U3)

These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill(). On
UltraSPARC T2, a block load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

Compatibility
Note

Prior UltraSPARC implementations may have provided the first
two registers at the same time. If code depends upon this
unsupported behavior it must be modified for UltraSPARC T2.
26 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Compatibility
Notes

Block load and store operations do not obey the ordering
restrictions of the currently selected processor memory model
(TSO, PSO, or RMO); block operations always execute under an
RMO memory ordering model. In general, explicit MEMBAR
instructions are required to order block operations among
themselves or with respect to normal loads and stores. In
addition, block operations do not generally conform to
dependence order on the issuing virtual processor; that is, no
read-after-write or write-after-read checking occurs between
block loads and stores. Explicit MEMBARs are required to
enforce dependence ordering between block operations that
reference the same address. However, UltraSPARC T2 partially
orders some block operations.

TABLE 5-3 describes the synchronization primitives required in
UltraSPARC T2, if any, to guarantee TSO ordering between
various sequences of memory reference operations. The first
column contains the reference type of the first or earlier
instruction; the second column contains the reference type of the
second or the later instruction. UltraSPARC T2 orders loads and
block loads against all subsequent instructions.

TABLE 5-3 UltraSPARC T2 Synchronization Requirements for Memory Reference
Operations

First reference Second reference Synchronization Required

Load Load —

Block load —

Store —

Block store —

Block load Load —

Block load —

Store —

Block store —

Store Load —

Block load MEMBAR #StoreLoad or #Sync

Store —

Block store —
• 27

Block Initializing Store ASIs

Description Block initializing store instructions are selected by using one of the block initializing
store ASIs with integer store instructions. These ASIs allow block initializing stores
to be performed to the same address spaces as normal stores. Little-endian ASIs
access data in little-endian format, otherwise the access is assumed to be big-endian.

Block store Load MEMBAR #StoreLoad or #Sync

Block load MEMBAR #StoreLoad or #Sync

Store MEMBAR #Sync

Block store MEMBAR #Sync

Instruction imm_asi
ASI

Value Operation

ST[B,H,W,TW,X]A ASI_ST_BLKINIT_AS_IF_USER_
PRIMARY (ASI_STBI_AIUP)

2216 64-byte block initialing store to
primary address space, user privilege

ASI_ST_BLKINIT_AS_IF_USER_SEC
ONDARY (ASI_STBI_AIUS)

2316 64-byte block initialing store to
secondary address space, user
privilege

ASI_ST_BLKINIT_NUCLEUS
(ASI_STBI_N)

2716 64-byte block initialing store to
nucleus address space

ASI_ST_BLKINIT_AS_IF_USER_PRI
MARY_LITTLE
(ASI_STBI_AIUPL)

2A16 64-byte block initialing store to
primary address space, user privilege,
little-endian

ASI_ST_BLKINIT_AS_IF_USER_SEC
ONDARY_LITTLE
(ASI_STBI_AIUS_L)

2B16 64-byte block initialing store to
secondary address space, user
privilege, little-endian

ASI_ST_BLKINIT_NUCLEUS_LITTLE
(ASI_STBI_NL)

2F16 64-byte block initialing store to
nucleus address space, little-endian

ASI_ST_BLKINIT_PRIMARY
(ASI_STBI_P)

E216 64-byte block initialing store to
primary address space

ASI_ST_BLKINIT_SECONDARY
(ASI_STBI_S)

E316 64-byte block initialing store to
secondary address space

ASI_ST_BLKINIT_PRIMARY_LITTLE
(ASI_STBI_PL)

EA16 64-byte block initialing store to
primary address space, little-endian

ASI_ST_BLKINIT_SECONDARY_LITTLE
(ASI_STBI_SL)

EB16 64-byte block initialing store to
secondary address space, little-endian

TABLE 5-3 UltraSPARC T2 Synchronization Requirements for Memory Reference
Operations

First reference Second reference Synchronization Required
28 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Integer stores of all sizes (to alternate space) are allowed to use these ASIs

All stores to these ASIs operate under relaxed memory ordering (RMO), regardless
of the PSTATE.mm setting, and software must follow a sequence of these stores with
a MEMBAR #Sync to ensure ordering with respect to subsequent loads and stores.
Stores to these ASIs where the least-significant 6 bits of the address are non-zero
(that is, not the first word in the cache line) behave the same as a normal RMO store.
A store to these ASIs where the least-significant 6 bits are zero will load a cache line
in the L2 cache with either all zeros or the existing data, and then update that line
with the new store data. This special store will make sure the line maintains
coherency when it is loaded into the cache, but will not generally fetch the line from
memory (initializing it with zeros instead). Stores using these ASIs to a noncacheable
address will behave the same as a normal store.

Access to these ASIs by a floating-point store (STFA, STDFA) will result in a
DAE_invalid_ASI trap (or mem_address_not_aligned trap if not properly aligned for
the store size).

The following pseudocode shows how these ASIs can be used to do a quadword
aligned (on both source and destination) copy of N quadwords from A to B (where
N > 3). Note that the final 64 bytes of the copy is performed using normal stores,
guaranteeing that all initial zeros in a cache line are overwritten with copy data.

%l0 ← [A]
%l1 ← [B]
prefetch [%l0]

for (i = 0; i < N-4; i++) {
if (!(i % 4)) {

 prefetch [%l0+64]
 }
 ldtxa [%l0] #ASI_TWINX_P, %l2
 add %l0, 16, %l0
 stxa %l2, [%l1] #ASI_ST_BLKINIT_PRIMARY
 add %l1, 8, %l1
 stxa %l3, [%l1] #ASI_ST_BLKINIT_PRIMARY
 add %l1, 8, %l1
}
for (i = 0; i < 4; i++) {
 ldtxa [%l0] #ASI_TWINX_P, %l2
 add %l0, 16, %l0
 stx %l2, [%l1]
 stx %l3,d [%l1+8]
 add %l1, 16, %l1

Note These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill(). On
UltraSPARC T2, a quad load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.
• 29

}
membar #Sync

Programming
Notes

These ASIs are specific to UltraSPARC T2 to provide a high-
performance bcopy alternative to block load and store (which
fetch the lined stored to from memory to the L2 cache, requiring
three memory operations for bcopy() and two memory
operations for a bfill()). These ASIs are of Class "N" and are
only allowed in dynamically linked, platform-specific, OS-
enabled libraries.

These ASIs provide a higher-performance bcopy() or bfill()
than LDBLOCKF and STBLOCKF, due to their ability to avoid
the unnecessary fetch from memory of the data that is
overwritten by the store.
30 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 6

Traps

6.1 Trap Levels
Each virtual processor supports two trap levels (MAXPTL = 2).

6.2 Trap Behavior
TABLE 6-1 specifies the codes used in the tables below.

TABLE 6-1 Table Codes

Code Meaning

H Trap is taken in Hyperprivileged mode

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

-x- Not possible. Hardware cannot generate this trap in the indicated running mode. For example, all
privileged instructions can be executed in privileged mode, therefore a privileged_opcode trap
cannot occur in privileged mode.

— This trap can only legitimately be generated by hyperprivileged software, not by the CPU
hardware. So, for the purposes of sun4v, the trap vector has to be correct, but for a hardware CPU
implementation these trap types are not generated by the hardware, therefore the resultant
running mode is irrelevant.
31

TABLE 6-2 Trap Behavior (1 of 2)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged

016 Reserved — — —

616 Reserved — — —

816 IAE_privilege_violation 3.1 H -x- -

B16 IAE_unauth_access 2.91 H H

C16 IAE_nfo_page 3.3 H H

F16 Reserved — — —

1016 illegal_instruction 6.12 H H

1116 privileged_opcode 7 P -x-

1216 unimplemented_LDTW — — —

1316 unimplemented_STTW — — — —

1416 DAE_invalid_asi 12.1 H H

1516 DAE_privilege_violation 12.4 H H

1616 DAE_nc_page 12.5 H H

1716 DAE_nfo_page 12.6 H H

1816–1F16 Reserved — — —

2016 fp_disabled 8.1 P P

2116 fp_exception_ieee_754 11.1 P P

2216 fp_exception_other 11.1 P P

2316 tag_overflow 14 P P

2416–2716 clean_window 10.1 P P

2816 division_by_zero 15 P P

2C16 Reserved — — —

2F16 Reserved — — —

3016 DAE_so_page 12.6 H H

3416 mem_address_not_aligned 10.2 H H

3516 LDDF_mem_address_not_aligned 10.1 H H

3616 STDF_mem_address_not_aligned 10.1 H H

3716 privileged_action 11.1 H H

3816 LDQF_mem_address_not_aligned — — —

3916 STQF_mem_addess_not_aligned — — —

3A16 Reserved — — —

4116–4F16 interrupt_level_n 32 − n P P

5016–5D16 Reserved — — —

6216 VA_watchpoint 11.2 H H

7016 Reserved — — — —

7316 Reserved — — — —
32 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

6.3 Trap Masking
TABLE 6-3 specifies the codes used inTABLE 6-3.

7416 control_transfer_instruction 11.1 P P

7516 instruction_VA_watchpoint 2.5 H H

7716–7B16 Reserved — — —

7C16 cpu_mondo_trap 16.6 P P

7D16 dev_mondo_trap 16.7 P P

7E16 resumable_error 33.3 P P

7F16 nonresumable_error
(generated by software only)

— — —

8016–9C16
1 spill_n_normal (n = 0–7) 9 P P

A0–BC16
1 spill_n_other (n = 0–7) 9 P P

C016–DC16
1 fill_n_normal (n = 0–7) 9 P P

E016–FC16
1 fill_n_other (n = 0–7) 9 P P

10016–17F16 trap_instruction 16.2 P P

18016–1FF16 htrap_instruction 16.2 -x- H

1. UltraSPARC T2 deviates from the 3.2 priority in UltraSPARC Architecture 2007 for
IAE_unauth_access.

2. UltraSPARC T2 deviates from UltraSPARC Architecture 2007 and swaps the priority of
illegal_instruction (6.2 in UltraSPARC Architecture 2007) and instruction_breakpoint
(6.1 in UltraSPARC Architecture 2007)

TABLE 6-3 Codes

Code Meaning

(nm) Never Masked — when the condition occurs in this running mode, it is
never masked out and the trap is always taken.

(ie) When the outstanding disrupting trap condition occurs in this privilege
mode, it may be conditioned (masked out) by PSTATE.ie = 0 (but remains
pending).

PIL Masked by PSTATE.ie and PIL

tct Masked by PSTATE.tct

TABLE 6-2 Trap Behavior (2 of 2)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged
• 33

For example, trap 7C16 (“cpu mondo”) in TABLE 6-4 is masked by PSTATE.ie in
nonprivileged and privileged mode.

TABLE 6-4 lists the trap mask behavior.

M Always masked

— This trap can only legitimately be generated by hyperprivileged software,
not by the CPU hardware. So, for the purposes of sun4v, the trap vector has
to be correct, but for a hardware CPU implementation these trap types are
not generated by the hardware, therefore the resultant running mode is
irrelevant.

TABLE 6-4 Trap Mask Behavior (1 of 2)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged

016 Reserved Reset (nm) (nm)

616 Reserved — — —

816 IAE_privilege_violation Precise (nm) (nm)

B16 IAE_unauth_access Precise (nm) (nm)

C16 IAE_nfo_page Precise (nm) (nm)

F16 Reserved — — —

1016 illegal_instruction Precise (nm) (nm)

1116 privileged_opcode Precise (nm) —

1216 unimplemented_LDTW — — —

1316 unimplemented_STTW — — —

1416 DAE_invalid_asi Precise (nm) (nm)

1516 DAE_privilege_violation Precise (nm) (nm)

1616 DAE_nc_page Precise (nm) (nm)

1716 DAE_nfo_page Precise (nm) (nm)

1816–1F16 Reserved — — —

2016 fp_disabled Precise (nm) (nm)

2116 fp_exception_ieee_754 Precise (nm) (nm)

2216 fp_exception_other Precise (nm) (nm)

2316 tag_overflow Precise (nm) (nm)

2416–2716 clean_window Precise (nm) (nm)

2816 division_by_zero Precise (nm) (nm)

2C16 Reserved — — —

2F16 Reserved — — —

3016 DAE_so_page Precise (nm) (nm)

TABLE 6-3 Codes (Continued)

Code Meaning
34 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

3416 mem_address_not_aligned Precise (nm) (nm)

3516 LDDF_mem_address_not_aligned Precise (nm) (nm)

3616 STDF_mem_address_not_aligned Precise (nm) (nm)

3716 privileged_action Precise (nm) —

3816 LDQF_mem_address_not_aligned — — —

3916 STQF_mem_addess_not_aligned — — —

3A16 Reserved — — —

4116–4F16 interrupt_level_n Disrupting PIL PIL

5016–5D16 Reserved — — —

6216 VA_watchpoint Precise (nm) (nm)

7016 Reserved — — —

7316 Reserved — — —

7416 control_transfer_instruction Precise tct tct

7516 instruction_VA_watchpoint Precise (nm) (nm)

7716–7B16 Reserved — — —

7C16 cpu_mondo_trap Disrupting (ie) (ie)

7D16 dev_mondo_trap Disrupting (ie) (ie)

7E16 resumable_error Disrupting (ie) (ie)

7F16 nonresumable_error (generated by
software only)

— — —

8016–9C16
1 spill_n_normal (n = 0–7) Precise (nm) (nm)

A0–BC16
1 spill_n_other (n = 0–7) Precise (nm) (nm)

C016–DC16
1 fill_n_normal (n =0–7) Precise (nm) (nm)

E016–FC16
1 fill_n_other (n = 0–7) Precise (nm) (nm)

10016–17F16 trap_instruction Precise (nm) (nm)

18016–1FF16 htrap_instruction Precise — (nm)

TABLE 6-4 Trap Mask Behavior (2 of 2)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged
• 35

36 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 7

Interrupt Handling

The chapter describes the hardware interrupt delivery mechanism for the
UltraSPARC T2 chip.

Hyperprivileged code notifies privileged code about some types of interrupts
software recoverable errors, and hardware-corrected errors (and precise error traps)
through the cpu_mondo, dev_mondo, and resumable_error traps as described in
Interrupt Queue Registers on page 37. Software interrupts are delivered to each virtual
processor using the interrupt_level_n traps. Software interrupts are described in the
UltraSPARC Architecture 2006 Specification.

The second type of interrupts are external “mondo” interrupts, such as those
generated by PCI-Express. These interrupts follow the standard mondo interrupt
ACK/NACK flow control. Only the first two 64-bit words of mondo data are
supported by UltraSPARC T2.

7.1 CPU Interrupt Registers

7.1.1 Interrupt Queue Registers
Each virtual processor has eight ASI_QUEUE registers at ASI = 2516,
VA{63:0} = 3C016-3F816 that are used for communicating interrupts to the operating
system. These registers contain the head and tail pointers for four supervisor
interrupt queues: cpu_mondo, dev_mondo, resumable_error, nonresumable_error.
The tail registers are read-only by supervisor, and read/write by hypervisor. Writes
to the tail registers by the supervisor generate a DAE_invalid_ASI trap. The head
registers are read/write by both supervisor and hypervisor.

Whenever the CPU_MONDO_HEAD register does not equal the CPU_MONDO_TAIL
register, a cpu_mondo trap is generated. Whenever the DEV_MONDO_HEAD
register does not equal the DEV_MONDO_TAIL register, a dev_mondo trap is
generated. Whenever the RESUMABLE_ERROR_HEAD register does not equal the
RESUMABLE_ERROR_TAIL register, a resumable_error trap is generated. Unlike
37

the other queue register pairs, the nonresumable_error trap is not automatically
generated whenever the NONRESUMABLE_ERROR_HEAD register does not equal
the NONRESUMABLE_ERROR_TAIL register; instead, the hypervisor will need to
generate the nonresumable_error trap.

TABLE 7-1 through TABLE 7-8 define the format of the eight ASI_QUEUE registers.

TABLE 7-1 CPU Mondo Head Pointer – ASI_QUEUE_CPU_MONDO_HEAD (ASI 2516, VA 3C016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for CPU mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-2 CPU Mondo Tail Pointer – ASI_QUEUE_CPU_MONDO_TAIL (ASI 2516, VA 3C816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for CPU mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-3 Device Mondo Head Pointer – ASI_QUEUE_DEV_MONDO_HEAD (ASI 2516, VA 3D016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for device mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-4 Device Mondo Tail Pointer – ASI_QUEUE_DEV_MONDO_TAIL (ASI 2516, VA 3D816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for device mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-5 Resumable Error Head Pointer – ASI_QUEUE_RESUMABLE_HEAD (ASI 2516, VA 3E016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved.

17:6 head X RW Head pointer for resumable error queue.

5:0 — 0 RO Reserved
38 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

TABLE 7-6 Resumable Error Tail Pointer – ASI_QUEUE_RESUMABLE_TAIL (ASI 2516, VA 3E816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for resumable error queue.

5:0 — 0 RO Reserved

TABLE 7-7 Nonresumable Error Head Pointer – ASI_QUEUE_NONRESUMABLE_HEAD (ASI 2516, VA 3F016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for nonresumable error queue.

5:0 — 0 RO Reserved

TABLE 7-8 Nonresumable Error Tail Pointer – ASI_QUEUE_NONRESUMABLE_TAIL (ASI 2516, VA 3F816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for nonresumable error queue.

5:0 — 0 RO Reserved
• 39

40 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 8

Memory Models

SPARC V9 defines the semantics of memory operations for three memory models.
From strongest to weakest, they are Total Store Order (TSO), Partial Store Order
(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the
freedom an implementation is allowed in order to obtain higher performance during
program execution. The purpose of the memory models is to specify any constraints
placed on the ordering of memory operations in uniprocessor and shared-memory
multiprocessor environments. UltraSPARC T2 supports only TSO, with the exception
that certain ASI accesses (such as block loads and stores) may operate under RMO.

Although a program written for a weaker memory model potentially benefits from
higher execution rates, it may require explicit memory synchronization instructions
to function correctly if data is shared. MEMBAR is a SPARC V9 memory
synchronization primitive that enables a programmer to control explicitly the
ordering in a sequence of memory operations. Processor consistency is guaranteed in
all memory models.

The current memory model is indicated in the PSTATE.mm field. It is unaffected by
normal traps. UltraSPARC T2 ignores the value set in this field and always operates
under TSO.

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit virtual address. The 8-bit ASI may be obtained from a ASI register or included in
a memory access instruction. The ASI is used to distinguish between and provide an
attribute for different 64-bit address spaces. For example, the ASI is used by the
UltraSPARC T2 MMU to control access to implementation-dependent control and
data registers and for access protection. Attempts by nonprivileged software
(PSTATE.priv = 0) to access restricted ASIs (ASI{7} = 0) cause a privileged_action trap.

Real memory spaces can be accessed without side effects. For example, a read from
real memory space returns the information most recently written. In addition, an
access to real memory space does not result in program-visible side effects.
41

8.1 Supported Memory Models
The following sections contain brief descriptions of the two memory models
supported by UltraSPARC T2. These definitions are for general illustration. Detailed
definitions of these models can be found in The SPARC Architecture Manual-Version 9.
The definitions in the following sections apply to system behavior as seen by the
programmer.

8.1.1 TSO
UltraSPARC T2 implements the following programmer-visible properties in Total
Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR
#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores
must check (snoop) the store buffer for the most recent store to that address. A
MEMBAR #Lookaside is not needed between a store and a subsequent load at
the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store if Strong Sequential Order is desired.

■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

■ Accesses to I/O space are all strongly ordered with respect to each other.

■ An L2 cache update is delayed on a store hit until all outstanding stores reach
global visibility. For example, a cacheable store following a noncacheable store is
not globally visible until the noncacheable store has reached global visibility;
there is an implicit MEMBAR #MemIssue between them.

8.1.2 RMO
UltraSPARC T2 implements the following programmer-visible properties for special
ASI accesses that operate under Relaxed Memory Order (RMO) mode:

Notes Stores to UltraSPARC T2 internal ASIs, block loads, and block
stores and block initializing stores are outside the memory
model; that is, they need MEMBARs to control ordering.

Atomic load-stores are treated as both a load and a store and can
only be applied to cacheable address spaces.
42 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

■ There is no implicit order between any two memory references, either cacheable
or noncacheable, except that noncacheable accesses to I/O space) are all strongly
ordered with respect to each other.

■ A MEMBAR must be used between cacheable memory references if stronger
order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable
after noncacheable accesses. A MEMBAR #Lookaside should be used between a
store and a subsequent load at the same noncacheable address.
• 43

44 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 9

Address Spaces and ASIs

9.1 Address Spaces
UltraSPARC T2 supports a 48-bit virtual address space.

9.1.1 48-bit Virtual and Real Address Spaces
UltraSPARC T2 supports a 48-bit subset of the full 64-bit virtual and real address
spaces. Although the full 64 bits are generated and stored in integer registers, legal
addresses are restricted to two equal halves at the extreme lower and upper portions
of the full virtual (real) address space. Virtual (real) addresses between
0000 8000 0000 000016 and FFFF 7FFF FFFF FFFF16 inclusive lie within a “VA hole”
(“RA hole”), are termed “out-of-range”1, and are illegal. Prior UltraSPARC
implementations introduced the additional restriction on software to not use pages
within 4 Gbytes of the VA (RA) hole as instruction pages to avoid problems with
prefetching into the VA (RA) hole. UltraSPARC T2 implements a hardware check for
instruction fetching near the VA (RA) hole and generates a trap when instructions
are executed from a location in the address range 0000 7FFF FFFF FFE016 to
0000 7FFF FFFF FFFF16, inclusive. However, even though UltraSPARC T2 provides
this hardware checking, it is still recommended that software should not use the 8-
Kbyte page before the VA (RA) hole for instructions. Address translation and MMU
related descriptions can be found in Translation on page 80.

1. Another way to view an out-of-range address is as any address where bits {63:48} are not all equal to bit {47}.
45

FIGURE 9-1 UltraSPARC T2’s 48-bit Virtual and Real Address Spaces, With Hole

Throughout this document, when virtual (real) address fields are specified as 64-bit
quantities, they are assumed to be sign-extended based on VA{47} (RA{47}).

A number of state registers are affected by the reduced virtual and real address
spaces. The PC register is 48 bits, sign-extended to 64-bits on read accesses. TBA,
TPC, and TNPC, registers are 48-bits and their values are not sign-extended when
read. No checks are done when these registers are written by software. It is the
responsibility of privileged software to properly update these registers.

An out-of-range virtual (real) address during an instruction access, caused by
execution into the VA (RA) hole or into 0000 7FFF FFFF FFE016 to
0000 7FFF FFFF FFFF16 inclusive, results in a trap if PSTATE.am = 0. In addition,
UltraSPARC T2 hardware detects when a branch target is in the VA hole, and
PSTATE.am changes from being set (’1’) for the branch, DONE, or RETRY to being
cleared (’0’) for the target instruction (via the branch delay slot instruction or
TSTATE) and generates an exception.

If the target virtual (real) address of a JMPL, RETURN, branch, or CALL instruction
is an out-of-range address and PSTATE.am = 0, a trap is generated with TPC equal
to the address of the JMPL, RETURN, branch, or CALL instruction.

An out-of-range virtual (real) address during a data access results in a trap if
PSTATE.am = 0.

FFFF FFFF FFFF FFFF

FFFF 8000 0000 0000

0000 0000 0000 0000

0000 7FFF FFFF FFFF

FFFF 7FFF FFFF FFFF

0000 8000 0000 0000

0000 7FFF FFFF DFFF
See Note (1)

Note (1): Use of this region restricted to data only.

Out of Range VA (RA)
(the “VA Hole” (“RA Hole”))
46 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

9.2 Alternate Address Spaces
TABLE 9-1 summarizes the ASI usage in UltraSPARC T2. The Section/Page column
contains a reference to the detailed explanation of the ASI (the page number refers to
this chapter). For internal ASIs, the legal VAs are listed (or the field contains “Any”
if all VAs are legal). Only bits 47:0 are checked when determining the legal VA range.
An access outside the legal VA range will generate a DAE_invalid_asi trap.

Notes All internal, nontranslating ASIs in UltraSPARC T2 can only be
accessed using LDXA and STXA.

ASIs 8016–FF16 are unrestricted (access allowed in all modes --
nonprivileged, privileged). ASIs 0016–2F16 are restricted to
privileged and hyperprivileged modes.

TABLE 9-1 UltraSPARC T2 ASI Usage (1 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page

0016–0316 Any — DAE_invalid_asi

0416 ASI_NUCLEUS RW Any — Implicit address space,
nucleus context, TL > 0

(See UA-2007)

0516–0B16 Any — DAE_invalid_asi

0C16 ASI NUCLEUS_LITTLE RW Any — Implicit address space,
nucleus context, TL > 0
(LE)

(See UA-2007)

0D16–0F16 Any — DAE_invalid_asi

1016 ASI_AS_IF_USER_PRIMARY RW Any — Primary address space,
user privilege

(See UA-2007)

1116 ASI_AS_IF_USER_SECONDA
RY

RW Any — Secondary address space,
user privilege

(See UA-2007)

1216–1316 Any —

1416 ASI_REAL RW Any — Real address (normally
used as cacheable)

page 53

1516 ASI_REAL_IO RW Any — Real address (normally
used as noncacheable,
with side effect)

page 53

1616 ASI_BLOCK_AS_IF_USER_P
RIMARY

RW Any — 64-byte block load/store,
primary address space,
user privilege

5.3
• 47

1716 ASI_BLOCK_AS_IF_USER_S
ECONDARY

RW Any — 64-byte block load/store,
secondary address space,
user privilege

5.3

1816 ASI_AS_IF_USER_PRIMARY
_LITTLE

RW Any — Primary address space,
user privilege (LE)

(See UA-2007)

1916 ASI_AS_IF_USER_SECONDA
RY_LITTLE

RW Any — Secondary address space,
user privilege (LE)

(See UA-2007)

1A16–1B16 Any —

1C16 ASI_REAL_LITTLE RW Any — Real address (normally
used as cacheable) (LE)

page 53

1D16 ASI_REAL_IO_LITTLE RW Any — Real address (normally
used as noncacheable,
with side effect) (LE)

page 53

1E16 ASI_BLOCK_AS_IF_USER_P
RIMARY_LITTLE

RW Any — 64-byte block load/store,
primary address space,
user privilege (LE)

5.3

1F16 ASI_BLOCK_AS_IF_USER_S
ECONDARY_LITTLE

RW Any — 64-byte block load/store,
secondary address space,
user privilege (LE)

5.3

2016 ASI_SCRATCHPAD RW 016–1816 Y Scratchpad registers page 53

2016 ASI_SCRATCHPAD RW 2016–
2816

— page 53

2016 ASI_SCRATCHPAD RW 3016–
3816

Y Scratchpad registers page 53

2116 ASI_MMU RW 816 Y I/DMMU Primary
Context register 0

12.7.2

2116 ASI_MMU RW 1016 Y DMMU Secondary
Context register 0

12.7.2

2116 ASI_MMU RW 10816 Y I/DMMU Primary
Context register 1

12.7.2

2116 ASI_MMU RW 11016 Y DMMU Secondary
Context register 1

12.7.2

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, user privilege
Store: Block initializing
store, primary address
space, user privilege

5.7.4

TABLE 9-1 UltraSPARC T2 ASI Usage (2 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
48 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

RW Any — Load: 128-bit atomic
load twin extended
word, secondary address
space, user privilege
Store: Block initializing
store

(See UA-2007)

2416 ASI_TWINX RO Any — 128-bit atomic load twin
extended word

(See UA-2007)

2516 ASI_QUEUE RW 3C016 Y CPU Mondo Queue head
pointer

7.1.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3C8 Y CPU Mondo Queue tail
pointer

7.1.1

2516 ASI_QUEUE RW 3D016 Y Device Mondo Queue
head pointer

7.1.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3D816 Y Device Mondo Queue
tail pointer

7.1.1

2516 ASI_QUEUE RW 3E016 Y Resumable Error Queue
head pointer

7.1.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3E816 Y Resumable Error Queue
tail pointer

7.1.1

2516 ASI_QUEUE RW 3F016 Y Nonresumable Error
Queue head pointer

7.1.1

2516 ASI_QUEUE RW (hyper-
priv)
RO (priv)

3F816 Y Nonresumable Error
Queue tail pointer

7.1.1

2616 ASI_TWINX_REAL R Any — 128-bit atomic LDDA,
real address

(See UA-2007)

2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

RW Any — Load: 128-bit atomic
load twin extended word
from nucleus context
Store: Block initializing
store from nucleus
context

(See UA-2007)

2816–2916 Any — DAE_invalid_asi

TABLE 9-1 UltraSPARC T2 ASI Usage (3 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
• 49

2A16 ASI_TWINX_AIUPL,
ASI_STBI_AIUPL

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, user privilege,
little endian
Store: Block initializing
store, primary address
space, user privilege,
little endian

(See UA-2007)

2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

RW Any — Load: 128-bit atomic
load twin extended
word, secondary address
space, user privilege,
little endian
Store: Block initializing
store, secondary address
space, user privilege,
little endian

(See UA-2007)

2C16 ASI_TWINX_LITTLE RO Any — 128-bit atomic load twin
extended word, little
endian

(See UA-2007)

2D16 Any — DAE_invalid_asi

2E16 ASI_TWINX_REAL_LITTLE RO Any — 128-bit atomic LDDA,
real address (LE)

(See UA-2007)

2F16 ASI_TWINX_NL,
ASI_STBI_NL

RW Any — Load: 128-bit atomic
load twin extended word
from nucleus context,
little endian
Store: Block initializing
store from nucleus
context, little endian

(See UA-2007)

8016 ASI_PRIMARY RW Any — Implicit primary address
space

(See UA-2007)

8116 ASI_SECONDARY RW Any — Implicit secondary
address space

(See UA-2007)

8216 ASI_PRIMARY_NO_FAULT RO Any — Primary address space,
no fault

(See UA-2007)

8316 ASI_SECONDARY_NO_
FAULT

RO Any — Secondary address space,
no fault

(See UA-2007)

8416–8716 Any — DAE_invalid_asi

8816 ASI_PRIMARY_LITTLE RW Any — Implicit primary address
space (LE)

(See UA-2007)

8916 ASI_SECONDARY_LITTLE RW Any — Implicit secondary
address space (LE)

(See UA-2007)

TABLE 9-1 UltraSPARC T2 ASI Usage (4 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
50 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

8A16 ASI_PRIMARY_NO_
FAULT_LITTLE

RO Any — Primary address space,
no fault (LE)

(See UA-2007)

8B16 ASI_SECONDARY_NO_
FAULT_LITTLE

RO Any — Secondary address space,
no fault (LE)

(See UA-2007)

8C16–BF16 Any — DAE_invalid_asi

C016 ASI_PST8_P Any — Eight 8-bit conditional
stores, primary address

(See UA-2007)

C116 ASI_PST8_S Any — Eight 8-bit conditional
stores, secondary address

(See UA-2007)

C216 ASI_PST16_P Any — Four 16-bit conditional
stores, primary address

(See UA-2007)

C316 ASI_PST16_S Any — Four 16-bit conditional
stores, secondary address

(See UA-2007)

C416 ASI_PST32_P Any — Two 32-bit conditional
stores, primary address

(See UA-2007)

C516 ASI_PST32_S Any — Two 32-bit conditional
stores, secondary address

(See UA-2007)

C616–C716 Any — DAE_invalid_asi

C816 ASI_PST8_PL Any — Eight 8-bit conditional
stores, primary address,
little endian

(See UA-2007)

C916 ASI_PST8_SL Any — Eight 8-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CA16 ASI_PST16_PL Any — Four 16-bit conditional
stores, primary address,
little endian

(See UA-2007)

CB16 ASI_PST16_SL Any — Four 16-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CC16 ASI_PST32_PL Any — Two 32-bit conditional
stores, primary address,
little endian

(See UA-2007)

CD16 ASI_PST32_SL Any — Two 32-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CE16–CF16 Any — DAE_invalid_asi

D016 ASI_FL8_P Any — 8-bit load/store, primary
address

(See UA-2007)

D116 ASI_FL8_S Any — 8-bit load/store,
secondary address

(See UA-2007)

TABLE 9-1 UltraSPARC T2 ASI Usage (5 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
• 51

D216 ASI_FL16_P Any — 16-bit load/store,
primary address

(See UA-2007)

D316 ASI_FL16_S Any — 16-bit load/store,
secondary address

(See UA-2007)

D416–D716 Any — DAE_invalid_asi

D816 ASI_FL8_PL Any — 8-bit load/store, primary
address, little endian

(See UA-2007)

D916 ASI_FL8_SL Any — 8-bit load/store,
secondary address, little
endian

(See UA-2007)

DA16 ASI_FL16_PL Any — 16-bit load/store,
primary address, little
endian

(See UA-2007)

DB16 ASI_FL16_SL Any — 16-bit load/store,
secondary address, little
endian

(See UA-2007)

DC16–DF16 Any — DAE_invalid_asi

E016 ASI_BLK_COMMIT_PRIMARY RW Any — 64-byte block commit
store, primary address

5.3

E116 ASI_BLK_COMMIT_SECONDA
RY

RW Any — 64-byte block commit
store, secondary address

5.3

E216 ASI_TWINX_P,
ASI_STBI_P

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space
Store: Block initializing
store, primary address
space

(See UA-2007)

E316 ASI_TWINX_S,
ASI_STBI_S

RW Any — Load: 128-bit atomic
load twin extended
word, sedondary address
space
Store: Block initializing
store, sedondary address
space

(See UA-2007)

E416–E916 Any — DAE_invalid_ASI

EA16 ASI_TWINX_PL,
ASI_STBI_PL

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, little endian
Store: Block initializing
store, primary address
space, little endian

(See UA-2007)

TABLE 9-1 UltraSPARC T2 ASI Usage (6 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
52 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

9.2.1 ASI_REAL, ASI_REAL_LITTLE, ASI_REAL_IO,
and ASI_REAL_IO_LITTLE

These ASIs are used to bypass the VA-to-RA translation. For these ASIs, the real
address is set equal to the truncated virtual address (that is, RA{39:0} ← VA{39:0}),
and the attributes used are those present in the matching TTE. The hypervisor will
normally set the TTE attributes for ASI_REAL and ASI_REAL_LITTLE to cacheable
(cp = 1) and for ASI_REAL_IO and ASI_REAL_IO_LITTLE to noncacheable, with
side effect (cp = 0, e = 1).

9.2.2 ASI_SCRATCHPAD

Each virtual processor has a set of privileged ASI_SCRATCHPAD registers at ASI 2016
with VA{63:} = 016–1816, 3016–3816. These registers are for scratchpad use by
privileged software.

EB16 ASI_TWINX_PL,
ASI_STBI_PL

RW Any — Load: 128-bit atomic
load twin extended
word, sedondary address
space, little endian
Store: Block initializing
store, sedondary address
space, little endian

(See UA-2007)

EC16–EF16 Any — DAE_invalid_asi

F016 ASI_BLK_P RW Any — 64-byte block load/store,
primary address

5.3

F116 ASI_BLK_S RW Any — 64-byte block load/store,
secondary address

5.3

F216–F716 Any — DAE_invalid_asi

F816 ASI_BLK_PL RW Any — 64-byte block load/store,
primary address (LE)

5.3

F916 ASI_BLK_SL RW Any — 64-byte block load/store,
secondary address (LE)

5.3

FA16–FF16 Any — DAE_invalid_asi

UltraSPARC T2
Implementation

Note

Accesses to VA 2016 and 2816 are much slower than to the other
six scratchpad registers.

TABLE 9-1 UltraSPARC T2 ASI Usage (7 of 7)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
• 53

54 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 10

Performance Instrumentation

10.1 SPARC Performance Control Register
Each virtual processor has a privileged Performance Control register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The Performance Control
register contains thirteen fields: hold_ov1, hold_ov0, ov1, sl1, mask1, ov0, sl0,
mask0, toe, ht, ut, st, and priv. hold_ov1 and hold_ov0 read as 0 and control whether
ov1 and ov0, respectively, are updated on a write. All bits except ov1 and ov0 are
always updated on a Performance Control register write. ov1 and ov0 are state bits
associated with the PIC.h and PIC.l overflow traps and are provided to allow
software to determine which PIC counter has overflowed. sl1 and sl0 controls which
events are counted in PIC.h and PIC.l, respectively. mask1 (mask0) is used in
conjunction with sl1 (sl0) in determining which set of subevents are counted in
PIC.h (PIC.l). toe controls whether a trap is generated when the PIC counter
overflows. ut controls whether user-level events are counted. st controls whether
supervisor-level events are counted. ht controls whether hypervisor level events are
counted. priv controls whether the PIC register can be read or written by
nonprivileged software. The format of this register is shown in TABLE 10-1. Note that
changing the fields in PCR does not affect the PIC values. To change the events
monitored, software needs to disable counting via PCR, reset the PIC, and then
enable the new event via the PCR.

Note As the ht bit controls the counting of hyperprivileged events,
writes to this bit while privileged are ignored.
55

Note that hold_ov1 and hold_ov0 control whether ov1 and ov0, respectively, are
updated when a write occurs. All of the 4 combinations of the hold_ov1 and
hold_ov0 fields are supported: both, either, or none of the ov1 and ov0 bits can be

TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field
Initial
Value R/W Description

63 hold_ov1 0 Write to 0 or 1,
reads as 0

If set to 0 on a write, update ov1 from bit 31 of the write data; else,
don’t update ov1. In this case ov1 holds its previous value.

62 hold_ov0 0 Write to 0 or 1,
reads as 0

If set to 0 on a write, update ov0 from bit 18 of the write data; else,
don’t update ov0. In this case ov0 holds its previous value.

61:32 — 0 RO Reserved

31 ov1 0 RW Set to 1 when PIC.h wraps from 232 –1 to 0, or when PIC.h is within
--16..-1 inclusively, and an event occurs which causes PIC.h to
increment. Once set, ov1 remains set until reset by software.

30:27 sl1 0 RW Selects 1 of 16 events to be counted for PIC.h as per the following
table.

26:19 mask1 0 RW Mask event for PIC.h as listed in TABLE 10-2.

18 ov0 0 RW Set to 1 when PIC.l wraps from 232 –1 to 0, or when PIC.l is within
--16..-1 inclusively, and an event occurs which causes PIC.l to
increment. Once set, ov0 remains set until reset by software.

17:14 sl0 0 RW Selects one of sixteen events to be counted for PIC.l as per the
following table.

13:6 mask0 0 RW Mask event for PIC.l as listed in TABLE 10-2.

5:4 toe 0 RW Trap-on-Event: This field controls whether a disrupting trapto
hyperprivileged software will occur if the corresponding counter
overflows. toe{1} corresponds to ov1, and toe{0} to ov0. Hardware
will and the value of toe{i} with ov{i} to produce a trap. Events in
event groups 2) and 3) are “precisely” trapped, assuming that
PCR.toe = 1 -- TPC will contain the address of an instruction that
generated a count event. If PCR.toe = 0 when the counter
overflows, TPC will contain the address of the instruction to be
executed next when the trap is eventually taken. Events in other
event groups are not directly related to the instruction stream;
therefore, the TPC may be some number of instructions later than
when the overflow event occurred.

3 ht 0 RO If ht = 1, count events in hyperprivileged mode; otherwise, ignore
hyperprivileged mode events.

2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore user mode
events.

1 st 0 RW If st = 1, count events in privileged mode; otherwise, ignore
privileged mode events.

0 priv 0 RW If priv = 1, prevent access to PIC by user-level code. If priv = 0,
allow access to PIC by user-level code.
56 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

updated independently. This allows software to avoid a race condition that may
occur, for example, if ov1 is set when the trap handler is entered, then ov0 is set by
a counter overflow between the time software reads PCR and resets ov1 prior to
leaving the trap handler.

TABLE 10-2 describes the settings of the sl0 and sl1 fields. Note that with the exception
of sl = 0, all events correspond to a given strand. Most sl fields have a mask
associated with them. Setting multiple mask bits at the same time can lead to
multiple events being counted as one event. More details are described in TABLE 10-2.

TABLE 10-2 sl Field Settings (1 of 4)

sl mask Event Description

0 — All strands idle Count cycles when no strand can be picked for the physical core on
which the monitoring strand resides.2

1 — — Reserved

2 011 Completed branches

0216 Taken branches Taken branches are always mispredicted3

0416 FGU arithmetic
instructions

All FADD, FSUB, FCMP, convert, FMUL, FDIV, FNEG, FABS, FSQRT,
FMOV, FPADD, FPSUB, FPACK, FEXPAND, FPMERGE, FMUL8,
FMULD8, FALIGNDATA, BSHUFFLE, FZERO, FONE, FSRC, FNOT1,
FNOT2, FOR, FNOR, FAND, FNAND, FXOR, FXNOR, FORNOT1,
FORNOT2, FANDNOT1, FANDNOT2, PDIST, SIAM.

0816 Load instructions

1016 Store instructions

2016 sethi %hi(fc00016),
%g0

Software count instructions.

4016 Other instructions

8016 Atomics Atomics are LDSTUB/A, CASA/XA, SWAP/A

Any other
value 0316–
FF16

Any subset of
instructions

Count instruction types identified by a 1 in the corresponding mask
register bit; e.g., FD16 counts all instructions.
Certain instructions (e.g., LDSTUB, CAS, SWAP) are decoded as both
Load and Store instructions.
• 57

3 0116 Icache misses Note: This counts only primary instruction cache misses, and does not
count duplicate instruction cache misses.4 Also, only “true” misses are
counted. If a thread encounters an I$ miss, but the thread is redirected
(due to a branch misprediction or trap, for example) before the line
returns from L2 and is loaded into the I$, then the miss is not counted.

0216 Dcache misses Note: This counts both primary and duplicate data cache misses.4

0416 — Undefined operation.

0816 — Undefined operation.

1016 L2 cache instruction
misses

2016 L2 cache load misses Note: Block loads are treated as one L2 miss event. In reality, each
individual load can hit or miss in the L2 since the block load is not
atomic.

0316, 1116,
1216, 1316,
2116, 2216,
2316, 3016,
3116, 3216,
3316

Subset of misses Count subset of misses identified by a '1' in corresponding mask bit;
e.g., 2316 counts I-cache, D-cache, and L2 load misses; this counter can
advance at most 1 per cycle.
Note: Instructions that get both an I-Cache miss (or an L2 cache
instruction miss) and a D-Cache miss (or L2 cache load miss) count as
one event.

Any other
value

— Reserved, Undefined operation.

4 0116 — Reserved

0216 — Reserved

0416 ITLB references to L2 For each ITLB miss with hardware tablewalk enabled, count each
access the ITLB hardware tablewalk makes to L2.

0816 DTLB references to L2 For each DTLB miss with hardware tablewalk enabled, count each
access the DTLB hardware tablewalk makes to L2.

1016 ITLB references to L2
which miss in L2

For each ITLB miss with hardware tablewalk enabled, count each
access the ITLB hardware tablewalk makes to L2 which misses in L2.
Note: Depending upon the hardware table walk configuration, each
ITLB miss may issue from 1 to 4 requests to L2 to search TSBs.

2016 DTLB references to L2
which miss in L2

For each DTLB miss with hardware tablewalk enabled, count each
access the DTLB hardware tablewalk makes to L2 which misses in L2.
Note: Depending upon the hardware tablewalk configuration, each
DTLB miss may issue from 1 to 4 requests to L2 to search TSBs.

C16, 1416,
1816, 1C16,
2416, 2816,
2C16, 3416,
3816 3C16

Subset of above events Count subset of misses identified by a 1 in corresponding mask bit;
e.g., 1416 counts ITLB and DTLB hardware tablewalk references to L2;
this counter can advance at most 1 per cycle. Certain combinations
(1416, 2816, 3416, 3816, 3C16) are likely not useful.

Any other
value

— Reserved. Undefined operation.

TABLE 10-2 sl Field Settings (2 of 4)

sl mask Event Description
58 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

5
0116 Streaming Unit Loads

to PCX
Count SPU load operations to L2.

0216 Streaming Unit Stores
to PCX

Count SPU store operations to L2.

0416 CPU Load to PCX Count CPU loads to L2.

0816 CPU I-fetch to PCX Count I-fetches to L2.

1016 CPU Store to PCX Count CPU stores to L2.

2016 MMU Load to PCX Count MMU loads to L2.

Any other
value 0316–
3F16

Subset of PCX requests Count subset of PCX requests identified by a '1' in corresponding
mask bit; e.g., 3F16counts all PCX requests; this counter increments at
most one per cycle.

4016–FF16 — Reserved

61

0116 DES/3DES operations Increment for each CWQ or ASI operation that uses DES/3DES unit.

0216 AES operations Increment for each CWQ or ASI operation that uses AES unit.

0416 RC4 operations Increment for each CWQ or ASI operation that uses RC4.

0816 MD5/SHA-1/SHA-256
operations

Increments for each CWQ or ASI operation that uses MD5, SHA-1, or
SHA-256.

1016 MA operations Increment for each CWQ or ASI modular arithmetic operation.

2016 CRC or TCP/IP
checksum

Increment for each iSCSI CRC or TCP/IP checksum operation.

Any other
value 0316–
3F16

Subset of SPU
operations

Count the SPU operations whose corresponding mask bit is a 1.
Hardware can initiate an MA operation and one of the other
operations simultaneously. Note: If MA operations are counted with
any other operations, and hardware initiates an MA operation and
one of the other operations at the same cycle, the counter increments
by 1.

4016–FF16 — Reserved

71

0116 DES/3DES busy cycles Increment each cycle DES/3DES unit is busy.

0216 AES busy cycles Increment each cycle AES unit is busy.

0416 RC4 busy cycles Increment each cycle RC4 unit is busy.

0816 MD5/SHA-1/SHA-256
busy cycles

Increment each cycle MD5, SHA-1, or SHA-256 unit is busy.

1016 MA busy cycles Increment each cycle modular arithmetic unit is busy.

2016 CRC/MPA/checksum Increment each cycle CRC/MPA/checksum unit is busy.

Any other
value 0316–
3F16

Unit busy subset Increment count if any unit whose corresponding mask bit is a 1 is
busy; this counter increments at most one per cycle.

4016–FF16 — Reserved

8-10 — — Reserved

TABLE 10-2 sl Field Settings (3 of 4)

sl mask Event Description
• 59

10.2 SPARC Performance Instrumentation
Counter
Each virtual processor has a Performance Instrumentation Counter register. Access
privilege is controlled by the setting of PCR.priv. When PCR.priv = 1 an attempt to
access this register in nonprivileged mode causes a privileged_action trap.

The PIC counter contains two fields: h and l. The h field counts the event select by
PCR.sl1. The l field counts the event selected by PCR.sl0. The ut, st, and ht fields for
PCR control which combination of user, supervisor, and/or hypervisor events are
counted.

Counter overflow is recorded in the ov0 or ov1 bit of the counter as well as in bit 15
of the SOFTINT register.

The format of the PIC register is shown in TABLE 10-3.

11 0416 ITLB misses Includes all misses (successful and unsuccessful tablewalks).

0816 DTLB misses Includes all misses (successful and unsuccessful tablewalks).

0C16 TLB misses Count both ITLB and DTLB misses, including successful and
unsuccessful tablewalks.

Any other
value

— Reserved. Undefined operation.

12-15 — — Reserved

1. PCR.UT, PCR.HT, and PCR.ST must all be set in order to properly count events in groups 6 and 7.
2. Unrestricted access to performance events for sl field setting 0 may have security implications

since they contain information about other strands. OS software can protect against unrestricted
access by setting the PCR.priv bit. Hypervisor software can protect against unrestricted access by
not having partitions span an eight-strand boundary.

3. In conjunction with the completed branch count, the taken branch count can be used to compute
not-taken prediction accuracy. Also it can be used to sum idle cycles in single-strand mode by
assuming a fixed number of pipeline bubble cycles per mispredicted branch.

4. A duplicate miss is a miss for which another thread has already missed in the cache for the line,
and the cache fill is pending. UltraSPARC {N2} does not count duplicate I-cache misses but does
count duplicate D-cache misses.

TABLE 10-2 sl Field Settings (4 of 4)

sl mask Event Description
60 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

TABLE 10-3 Performance Instrumentation Counter Register – PIC (ASR 1116)

Bit Field Initial Value R/W Description

63:32 h 0 RW Programmable event counter, event controlled by PCR.sl1.

31:0 l 0 RW Programmable event counter, event controlled by PCR.sl0.
• 61

62 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 11

Implementation Dependencies

11.1 SPARC V9 General Information

11.1.1 Level-2 Compliance (Impdep #1)
UltraSPARC T2 is designed to meet Level-2 SPARC V9 compliance. It

■ Correctly interprets all nonprivileged operations, and

■ Correctly interprets all privileged elements of the architecture.

11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
SPARC V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with
invalid values in reserved fields (other than reserved FPops) encountered during
execution cause an illegal_instruction trap. Unimplemented and reserved ASI values
cause a DAE_invalid_ASI trap.

11.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)
UltraSPARC T2 supports two trap levels; that is, MAXPTL = 2. Normal execution is at
TL = 0.

A virtual processor normally executes at trap level 0 (execute_state, TL = 0). Per
SPARC V9, a trap causes the virtual processor to enter the next higher trap level,
which is a very fast and efficient process because there is one set of trap state

Note System emulation routines (for example, quad-precision
floating-point operations) shipped with UltraSPARC T2 also
must be Level-2 compliant.
63

registers for each trap level. After saving the most important machine states (PC,
NPC, PSTATE) on the trap stack at this level, the trap (or error) condition is
processed.

11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)
UltraSPARC T2 supports precise trap handling for all operations except for deferred
and disrupting traps from hardware failures and interrupts. UltraSPARC T2
implements precise traps, interrupts, and exceptions for all instructions, including
long-latency floating-point operations. Multiple traps levels are supported, allowing
graceful recovery from faults. UltraSPARC T2 can efficiently execute kernel code
even in the event of multiple nested traps, promoting strand efficiency while
dramatically reducing the system overhead needed for trap handling.

Multiple sets of global registers are provided. This further increases OS
performance, providing fast trap execution by avoiding the need to save and restore
registers while processing exceptions.

All traps supported in UltraSPARC T2 are listed in TABLE 6-2 on page 32.

11.1.5 Secure Software
To establish an enhanced security environment, it may be necessary to initialize
certain virtual processor states between contexts. Examples of such states are the
contents of integer and floating-point register files, condition codes, and state
registers. See also Clean Window Handling (Impdep #102).

11.1.6 Operation in Nonprivileged Mode with TL > 0
Operation with PSTATE.priv = 0 and TL > 0 is invalid and will result in an
IAE_privilege_violation trap on UltraSPARC T2.

11.1.7 Address Masking (Impdep #125)
UltraSPARC T2 follows UltraSPARC Architecture 2007 for PSTATE.am masking. In
addition to the masking required by UltraSPARC Architecture 2007, addresses to
non-translating ASIs and *REAL* ASIs are masked if PSTATE.am = 1. Translating
accesses that bypass translation are also masked if PSTATE.am = 1.
64 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

11.2 SPARC V9 Integer Operations

11.2.1 Integer Register File and Window Control
Registers (Impdep #2)
UltraSPARC T2 implements an eight-window 64-bit integer register file; that is,
N_REG_WINDOWS = 8. UltraSPARC T2 truncates values stored in the CWP,
CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This
includes implicit updates to these registers by SAVE, SAVED, RESTORE, and
RESTORED instructions. The most significant two bits of these registers read as zero.

11.2.2 Clean Window Handling (Impdep #102)
SPARC V9 introduced the concept of “clean window” to enhance security and
integrity during program execution. A clean window is defined to be a register
window that contains either all zeroes or addresses and data that belong to the
current context. The CLEANWIN register records the number of available clean
windows.

When a SAVE instruction requests a window and there are no more clean windows,
a clean_window trap is generated. System software needs to clean one or more
windows before returning to the requesting context.

11.2.3 Integer Multiply and Divide
Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},
UDIV{cc}, UDIVX) are executed directly in hardware.

11.2.4 MULScc
SPARC V9 does not define the value of xcc and rd{63:32] for MULScc. UltraSPARC
T2 sets xcc.n to 0, xcc.z to 1 if rd{63:0} is zero and to 0 if rd{63:0} is not zero, xcc.v to
0, and xcc.c to 0. UltraSPARC T2 sets rd{63:33} to zeros, and sets rd{32} to icc.c (that
is, rd{32} is set if there is a carry-out of rd{31}; otherwise, it is cleared).
• 65

11.3 SPARC V9 Floating-Point Operations

11.3.1 Subnormal Operands and Results; Nonstandard
Operation
UltraSPARC T2 handles some cases of subnormal operands or results directly in
hardware and traps on the rest. In the trapping cases, an fp_exception_other
[fft = unfinished_FPop] trap is signaled and these operations are handled in system
software.

Because trapping on subnormal operands and results can be quite costly,
UltraSPARC T2 supports the nonstandard result option of the SPARC-V9
architecture. When the FSR.ns bit is set, subnormal operands or results encountered
in trapping cases are flushed to zero and the unfinished_FPop floating-point trap is
not taken.

11.3.2 Overflow, Underflow, and Inexact Traps (Impdep
#3, 55)
UltraSPARC T2 implements precise floating-point exception handling. Underflow is
detected before rounding. Prediction of overflow, underflow, and inexact traps for
operations as well as prediction of invalid operation is used to simplify the
hardware.

Significant performance degradation may be observed while
running with the inexact exception enabled.
66 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

11.3.3 Quad-Precision Floating-Point Operations
(Impdep #3)
All quad-precision floating-point instructions, listed in TABLE 11-1, cause an
illegal_instruction trap. These operations are then emulated by system software.

11.3.4 Floating-Point Upper and Lower Dirty Bits in
FPRS Register
The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point
Registers State (FPRS) register are set when an instruction that modifies the
corresponding upper or lower half of the floating-point register file is issued.
Floating-point register file modifying instructions include floating-point operate,
graphics, floating-point loads and block load instructions.

TABLE 11-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F<s|d>TOq Convert single-/double- to quad-precision floating-point.

F<i|x>TOq Convert 32-/64-bit integer to quad-precision floating-point.

FqTO<s|d> Convert quad- to single-/double-precision floating-point.

FqTO<i|x> Convert quad-precision floating-point to 32-/64-bit integer.

FCMP<E>q Quad-precision floating-point compares.

FMOVq Quad-precision floating-point move.

FMOVqcc Quad-precision floating-point move if condition is satisfied.

FMOVqr Quad-precision floating-point move if register match condition.

FABSq Quad-precision floating-point absolute value.

FADDq Quad-precision floating-point addition.

FDIVq Quad-precision floating-point division.

FdMULq Double- to quad-precision floating-point multiply.

FMULq Quad-precision floating-point multiply.

FNEGq Quad-precision floating-point negation.

FSQRTq Quad-precision floating-point square root.

FSUBq Quad-precision floating-point subtraction.
• 67

While SPARC V9 allows FPRS.du and FPRS.dl to be set pessimistically, UltraSPARC
T2 only sets FPRS.du or FPRS.dl when an instruction that updates the floating-point
register file successfully completes. This implies that floating-point instructions that
do not update a floating-point register (for example, an FMOVcc that does not meet
the condition or a floating-point operate instruction that takes a trap) leave FPRS.du
and FPRS.dl unchanged.

11.3.5 Floating-Point Status Register (FSR) (Impdep #13,
19, 22, 23, 24)
UltraSPARC T2 supports precise-traps and implements all three exception fields
(tem, cexc, and aexc) conforming to IEEE Standard 754-1985.

UltraSPARC T2 implements the FSR register according to the definition in
UltraSPARC Architecture 2007, with the following implementation-specific
clarifications:

■ UltraSPARC T2 does not contain an FQ, therefore FSR.qne always reads as 0 and
an attempt to read the FQ with an RDPR instruction causes an illegal_instruction
trap.

■ UltraSPARC T2 does not detect the unimplemented_FPop, sequence_error,
hardware_error or invalid_fp_register floating-point trap types directly in
hardware, therefore does not generate a trap when those conditions occur.

11.4 SPARC V9 Memory-Related Operations

11.4.1 Load/Store Alternate Address Space (Impdep #5,
29, 30)
Supported ASI accesses are listed in Alternate Address Spaces on page 47.

11.4.2 Read/Write ASR (Impdep #6, 7, 8, 9, 47, 48)
Supported ASRs are listed in Chapter 3, Registers.
68 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

11.4.3 MMU Implementation (Impdep #41)
UltraSPARC T2 memory management is based on in-memory Translation Storage
Buffers (TSBs) backed by a Software Translation Table. See Chapter 12, Memory
Management Unit for more details.

11.4.4 FLUSH and Self-Modifying Code (Impdep #122)
FLUSH is needed to synchronize code and data spaces after code space is modified
during program execution. FLUSH is described in Memory Synchronization:
MEMBAR and FLUSH on page 123. On UltraSPARC T2, the FLUSH effective address
is ignored, and as a result, FLUSH cannot cause a DAE_invalid_ASI trap.

11.4.5 PREFETCH{A} (Impdep #103, 117)
For UltraSPARC T2, PREFETCH{A} instructions follow TABLE 11-2 based on the fcn
value. All prefetches in UltraSPARC T2 are of the "weak" variety (that is, on an
MMU miss, the prefetch is dropped) so the only trap generated by prefetch is
illegal_instruction (for fcn = 516–F16).

Note SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing virtual processor. In other words, a store to
instruction space prior to the FLUSH instruction is visible
immediately after the completion of FLUSH. When a flush is
performed, UltraSPARC T2 guarantees that earlier code
modifications will be visible across the whole system.

TABLE 11-2 PREFETCH{A} Variants in UltraSPARC T2

fcn Prefetch Function Action

016 Weak prefetch for several reads Weak prefetch into Level 2 cache.

116 Weak prefetch for one read

216 Weak prefetch for several writes

316 Weak prefetch for one write

416 Prefetch Page No operation.

516–F16 — Illegal_instruction trap.

1016 Invalidate read-once prefetch Weak prefetch into Level 2 cache.

1116 Prefetch for read to nearest unified cache Weak prefetch into Level 2 cache.

1216–1316 Strong prefetches Weak prefetch into Level 2 cache.
• 69

11.4.6 LDD/STD Handling (Impdep #107, 108)
LDD and STD instructions are directly executed in hardware.

11.4.7 FP mem_address_not_aligned (Impdep #109, 110,
111, 112)
LDDF{A}/STDF{A} cause an LDDF_/STDF_ mem_address_not_aligned trap if the
effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an
illegal_instruction trap.

11.4.8 Supported Memory Models (Impdep #113, 121)
UltraSPARC T2 supports only the TSO memory model, although certain specific
operations such as block loads and stores operate under the RMO memory model.
See Chapter 8, Section 8.2. Supported Memory Models.”.

1416 Strong prefetch for several reads Weak prefetch into Level 2 cache.

1516 Strong prefetch for one read

1616 Strong prefetch for several writes

1716 Strong prefetch for one write

1816 Invalidate cache entry No operation for PREFETCHA.
For Prefetch, if executed in user or
privileged mode, no operation. If
executed while hyperprivileged,
invalidate cache line from Level 2
cache (writing back to memory if
dirty) leaving Level 2 cache line
invalid.

1916–1F16 — No operation

Note LDD/STD are deprecated in SPARC V9. In UltraSPARC T2 it is
more efficient to use LDX/STX for accessing 64-bit data. LDD/
STD take longer to execute than two 32- or 64-bit loads/stores.

TABLE 11-2 PREFETCH{A} Variants in UltraSPARC T2

fcn Prefetch Function Action
70 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

11.4.9 Implicit ASI When TL > 0 (Impdep #124)
UltraSPARC T2 matches all UltraSPARC Architecture implementations and makes
the implicit ASI for instruction fetching ASI_NUCLEUS when TL > 0, while the
implicit ASI for loads and stores when TL > 0 is ASI_NUCLEUS if PSTATE.cle=0 or
ASI_NUCLEUS_LITTLE if PSTATE.cle=1.

11.5 Non-SPARC V9 Extensions

11.5.1 Cache Subsystem
UltraSPARC T2 contains one or more levels of cache. The cache subsystem
architecture is described in Appendix D, Caches and Cache Coherency.

11.5.2 Block Memory Operations
UltraSPARC T2 supports 64-byte block memory operations utilizing a block of eight
double-precision floating point registers as a temporary buffer. See Block Load and
Store Instructions on page 25.

11.5.3 Partial Stores
UltraSPARC T2 supports 8-/16-/32-bit partial stores to memory. See Block Load and
Store Instructions on page 25.

11.5.4 Short Floating-Point Loads and Stores
UltraSPARC T2 supports 8-/16-bit loads and stores to the floating-point registers.

11.5.5 Load Twin Extended Word
UltraSPARC T2 supports 128-bit atomic load operations to a pair of integer registers.
• 71

11.5.6 UltraSPARC T2 Instruction Set Extensions
(Impdep #106)
The UltraSPARC T2 processor supports VIS 2.0. VIS instructions are designed to
enhance graphics functionality and improve the efficiency of memory accesses.

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution
cause an illegal_instruction trap.

11.5.7 Performance Instrumentation
UltraSPARC T2 performance instrumentation is described in Chapter 10, Performance
Instrumentation.
72 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

CHAPTER 12

Memory Management Unit

This chapter provides detailed information about the UltraSPARC T2 Memory
Management Unit. It describes the internal architecture of the MMU and how to
program it.

12.1 Translation Table Entry (TTE)
The Translation Table Entry holds information for a single page mapping. The TTE is
broken into two 64-bit words, representing the tag and data of the translation. Just as
in a hardware cache, the tag is used to determine whether there is a hit in the TSB.

. TABLE 12-1 shows the sun4v TTE tag format.

The sun4v TTE data format is shown in TABLE 12-2.

TABLE 12-1 TTE Tag Format

Bit Field Description

63:61 — Reserved

60:48 context The 13-bit context identifier associated with the TTE.

47:42 — Reserved

41:0 va Virtual Address Tag{63:22}. The virtual page number. Bits 21 through
13 are not maintained in the tag, since these bits are used to index the
smallest TSB (512 entries).
NOTE: Hardware only supports a 48-bit VA.
73

TABLE 12-2 TTE Data Format

Bit Field Description

63 v Valid. If the Valid bit is set, the remaining fields of the TTE are meaningful.

62 nfo No-fault-only. If this bit is set, loads with ASI_PRIMARY_NO_FAULT{_LITTLE},
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other DMMU access will
trap with a DAE_nfo_page trap. For the IMMU, if the nfo bit is set, an iae_nfo_page
trap will be taken.

61:56 soft2 soft2 and soft are software-defined fields, provided for use by the operating system.
Software fields are not implemented in the UltraSPARC T2 TLB. soft and soft2 fields
may be written with any value; they read from the TLB as zero, with the exception of
soft{61}, which contains the TLB data parity bit.

55:13 ra The real page1 number. For UltraSPARC T2, a 40-bit real address range is supported by
the hardware tablewalker, and bits {55:40} should always be zero.

12 ie Invert endianess. If this bit is set, accesses to the associated page are processed with
inverse endianness from what is specified by the instruction (big-for-little and little-
for-big). For the IMMU, the ie bit in the TTE is written into the ITLB but ignored
during ITLB operation. The value of the ie bit written into the ITLB will be read out on
an ITLB Data Access read.
Note: This bit is intended to be set primarily for noncacheable accesses.

11 e Side effect. If this bit is set, noncacheable memory accesses other than block loads and
stores are strongly ordered against other e bit accesses, and noncacheable stores are
not merged. This bit should be set for pages that map I/O devices having side effects.
Note, however, that the e bit does not prevent normal instruction prefetching. For the
IMMU, the e bit in the TTE is written into the ITLB, but ignored during ITLB
operation. The value of the e bit written into the ITLB will be read out on an ITLB Data
Access read.
NOTE: The e bit does not force an uncacheable access. It is expected, but not required,
that the cp and cv bits will be set to zero when the e bit is set.

10:9 cp, cv The cacheable-in-physically-indexed-cache and cacheable-in-virtually-indexed-cache
(cp, cv) bits determine the placement of data in UltraSPARC T2 caches, according to
TABLE 12-3. The MMU does not operate on the cacheable bits, but merely passes them
through to the cache subsystem. The cv bit is ignored by UltraSPARC T2, and is not
written into the TLBs and returns zero on a Data Access read.

TABLE 12-3 Cacheable Field Encoding (from TSB)

Cacheable
(cp:cv)

Meaning of TTE When Placed in:

iTLB
(I-cache PA-Indexed)

dTLB
(D-cache PA-Indexed)

0x
Cacheable L2 cache only Cacheable L2 cache only

1x
Cacheable L2 cache, I-cache Cacheable L2 cache, D-cache
74 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

12.2 Translation Storage Buffer (TSB)
A TSB is an array of TTEs managed entirely by software. It serves as a cache of the
Software Translation table

A TSB is arranged as a direct-mapped cache of TTEs.

The TSB exists as a normal data structure in memory and therefore may be cached.
This policy may result in some conflicts with normal instruction and data accesses,
but the dynamic sharing of the level-2 cache resource should provide a better overall
solution than that provided by a fixed partitioning.

8 p Privileged. If the p bit is set, only privileged software can access the page mapped by
the TTE. If the p bit is set and an access to the page is attempted when
PSTATE.priv = 0, the MMU will signal an IAE_privilege_violation or
DAE_privilege_violation trap.

7 ep Executable. If the ep bit is set, the page mapped by this TTE has execute permission
granted. Otherwise, execute permission is not granted and the hardware table-walker
will not load the ITLB with a TTE with ep = 0. For the IMMU and DMMU, the ep bit
in the TTE is not written into the TLB, and returns zero on a Data Access read.

6 w Writable. If the w bit is set, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted and the MMU will cause a trap if a write is
attempted. For the IMMU, the w bit in the TTE is written into the ITLB, but ignored
during ITLB operation. The value of the w bit written into the ITLB will be read out on
an ITLB Data Access read.

5:4 soft (see soft2, above)

3:0 size The page size of this entry, encoded as shown in TABLE 12-4.

1. sun4v supports translation from virtual addresses (VA) to real addresses (RA. Privileged code manages the
VA-to-RA translations..

TABLE 12-2 TTE Data Format (Continued)

Bit Field Description

TABLE 12-4 Size Field Encoding (from TTE)

Size{2:0} Page Size

0000 8 KB
0001 64 KB
0010 Reserved
0011 4 MB
0100 Reserved
0101 256 MB
0110-1111 Reserved
• 75

FIGURE 12-1 shows the TSB organization. The constant N is determined by the size
field in the TSB register; it may range from 512 entries to 16 M entries.

FIGURE 12-1 TSB Organization

12.3 MMU-Related Faults and Traps

12.3.1 IAE_privilege_violation Trap
The I-MMU detects a privilege violation for an instruction fetch; that is, an
attempted access to a privileged page when PSTATE.priv = 0.

12.3.2 IAE_nfo_page Trap
The I-MMU detects an access to a page marked with the nfo (no-fault-only) bit.

12.3.3 instruction_address_range Trap
The instruction_address_range occurs when the virtual address out of range and
PSTATE.am = 0 (see 48-bit Virtual and Real Address Spaces on page 45).

12.3.4 instruction_real_range Trap
The instruction_real_range trap occurs when the Real address out of range (see 48-bit
Virtual and Real Address Spaces on page 45).

12.3.5 DAE_privilege_violation Trap
The D-MMU detects a privilege violation for a data access; that is, an attempted
access to a privileged page when PSTATE.priv = 0.

Tag1 (8 bytes) Data1 (8 bytes)

000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in TSB
76 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

12.3.6 DAE_side_effect_page Trap
A speculative (nonfaulting) load instruction issued to a page marked with the side-
effect (e) bit = 1.

12.3.7 DAE_nc_page Trap
An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable; for example,, with cp = 0.

12.3.8 DAE_invalid_asi Trap
An invalid LDA/STA ASI value, invalid virtual address, read to write-only register,
or write to read-only register, but not for an attempted user access to a restricted ASI
(see the privileged_action trap described below).

12.3.9 DAE_nfo_page Trap
An access with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the nfo
(no-fault-only) bit.

12.3.10 privileged_action Trap
This trap occurs when an access is attempted using a restricted ASI while in non-
privileged mode (PSTATE.priv = 0).

12.3.11 *_mem_address_not_aligned Traps
The lddf_mem_address_not_aligned, stdf_mem_address_not_aligned, and
mem_address_not_aligned traps occur when a load, store, atomic, or JMPL/
RETURN instruction with a misaligned address is executed.

Implementation
Note

For UltraSPARC T2, cp only controls cacheability in the primary
cache, not the shared secondary, and thus the hardware
supports the ability to complete an atomic operation for pages
with the cp bit = 0 as long as the secondary cache is enabled.
However, to keep UltraSPARC T2 compliant with the
UltraSPARC Architecture 2006 specification, the DAE_nc_page
trap is generated when an atomic is issued to a memory address
marked with cp = 0.
• 77

12.4 MMU Operation Summary
TABLE 12-7 summarizes the behavior of the D-MMU for noninternal ASIs using
tabulated abbreviations. TABLE 12-8 summarizes the behavior of the I-MMU. In each
case, and for all conditions, the behavior of the MMU is given by one of the
abbreviations in TABLE 12-5. TABLE 12-6 lists abbreviations for ASI types.

Other abbreviations include “w” for the writable bit, “e” for the side-effect bit, and
“p” for the privileged bit.

TABLE 12-7 and TABLE 12-8 do not cover the following cases:

■ Invalid ASIs, ASIs that have no meaning for the opcodes listed, or nonexistent
ASIs; for example, ASI_PRIMARY_NO_FAULT for a store or atomic; also, access to
UltraSPARC T2 internal registers other than LDXA, LDFA, STDFA or STXA; the
MMU signals a DAE_invalid_asi trap for this case.

TABLE 12-5 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal translation

dasi DAE_invalid_asi trap

dpriv DAE_privilege_violation trap

dse DAE_side_effect_page trap

dprot fast_data_access_protection trap

iexc IAE_privilege_violation trap

TABLE 12-6 Abbreviations for ASI Types

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT

SEC Any ASI with SECONDARY translation, except *NO_FAULT

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_*_AS_IF_USER_PRIMARY*

U_SEC ASI_*_AS_IF_USER_SECONDARY*

U_PRIV ASI_*_AS_IF_PRIV_*

REAL ASI_*REAL*

Note The *_LITTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.
78 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

■ Attempted access using a restricted ASI in nonprivileged mode; the MMU signals
a privileged_action trap for this case. Attempted use of a hyperprivileged ASI in
privileged mode; the MMU also signals privileged_action trap for this case.

■ An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable in a physical cache (that is, with cp = 0 or pa{39} = 1); the
MMU signals a DAE_nc_page trap for this case.

■ A data access with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} or an instruction access to a
page marked with the nfo (no-fault-only) bit; the MMU signals a DAE_nfo_page
or IAE_nfo_page trap for this case.

■ An instruction fetch to a memory address marked non-executable (ep = 0). This is
checked when Hardware Tablewalk attempts to load the I-MMU, and an
IAE_unauth_access trap is taken instead.

■ Real address out of range; the MMU signals an instruction_real_range trap for
this case.

■ Virtual address out of range and PSTATE.am is not set; the MMU signals an
instruction_address_range trap for this case.

TABLE 12-7 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode priv Mode ASI w
e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1

Load

non-
privileged

PRIM, SEC — ok dpriv ok dpriv

PRIM_NF, SEC_NF — ok dpriv dse dpriv

privileged

PRIM, SEC, NUC — ok

PRIM_NF, SEC_NF — ok dse

U_PRIM, U_SEC — ok dpriv ok dpriv

REAL — ok

FLUSH

non-
privileged

— ok

privileged — ok

Store or
Atomic

non-
privileged

PRIM, SEC 0 dprot dpriv dprot dpriv

1 ok dpriv ok dpriv

privileged

PRIM, SEC, NUC 0 dprot

1 ok

U_PRIM, U_SEC 0 dprot dpriv dprot dpriv

1 ok dpriv ok dpriv

REAL 0 dprot

1 ok
• 79

See Alternate Address Spaces on page 47 for a summary of the UltraSPARC T2 ASI
map.

12.5 Translation

12.5.1 Instruction Translation

12.5.1.1 Instruction Prefetching

UltraSPARC T2 fetches instructions sequentially (including delay slots). UltraSPARC
T2 fetches delay slots before the branch is resolved (before whether the delay slot
will be annulled is known). UltraSPARC T2 also fetches the target of a DCTI before
the delay slot executes.

12.5.2 Data Translation

TABLE 12-8 I-MMU Operations

Condition Behavior

priv Mode P = 0 P =

nonprivileged ok iexc

privileged ok

TABLE 12-9 DMMU Translation (1 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor

0016–
0316

Reserved privileged_action DAE_invalid_asi

0416 ASI_NUCLEUS privileged_action VA → PA

0516–
0B16

Reserved privileged_action DAE_invalid_asi

0C16 ASI_NUCLEUS_LITTLE privileged_action VA → PA

0D16–
0F16

Reserved privileged_action DAE_invalid_asi

1016 ASI_AS_IF_USER_PRIMARY privileged_action VA → PA

1116 ASI_AS_IF_USER_SECONDARY privileged_action VA → PA
80 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

1216–
1316

Reserved privileged_action DAE_invalid_asi

1416 ASI_REAL privileged_action RA → PA

1516 ASI_REAL_IO privileged_action RA → PA

1616 ASI_BLOCK_AS_IF_USER_PRIMARY privileged_action VA → PA

1716 ASI_BLOCK_AS_IF_USER_
SECONDARY

privileged_action VA → PA

1816 ASI_AS_IF_USER_PRIMARY_LITTLE privileged_action VA → PA

1916 ASI_AS_IF_USER_SECONDARY_
LITTLE

privileged_action VA → PA

1A16–
1B16

Reserved privileged_action DAE_invalid_asi

1C161 ASI_REAL_LITTLE privileged_action RA → PA

1D16 ASI_REAL_IO_LITTLE privileged_action RA → PA

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE

privileged_action VA → PA

1F16 ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE

privileged_action VA → PA

2016 ASI_SCRATCHPAD privileged_action nontranslating

2116 ASI_MMU privileged_action nontranslating

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

privileged_action VA → PA

2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

privileged_action VA → PA

2416 ASI_TWINX privileged_action VA → PA

2516 ASI_QUEUE privileged_action nontranslating

2616 ASI_TWINX_REAL privileged_action RA → PA

2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

privileged_action VA → PA

2816–
2916

Reserved privileged_action DAE_invalid_asi

2A16 ASI_TWINX_AIUPL,
ASI_STBI_AIUPL

privileged_action VA → PA

2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

privileged_action VA → PA

2C16 ASI_TWINX_LITTLE privileged_action VA → PA

2D16 Reserved privileged_action DAE_invalid_asi

2E16 ASI_TWINX_REAL_LITTLE privileged_action RA → PA

TABLE 12-9 DMMU Translation (2 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
• 81

2F16 ASI_TWINX_NL,
ASI_STBI_NL

privileged_action VA → PA

8016 ASI_PRIMARY VA → PA VA → PA

8116 ASI_SECONDARY VA → PA VA → PA

8216 ASI_PRIMARY_NO_FAULT VA → PA VA → PA

8316 ASI_SECONDARY_NO_FAULT VA → PA VA → PA

8416–
8716

Reserved DAE_invalid_asi DAE_invalid_asi

8816 ASI_PRIMARY_LITTLE VA → PA VA → PA

8916 ASI_SECONDARY_LITTLE VA → PA VA → PA

8A16 ASI_PRIMARY_NO_FAULT_LITTLE VA → PA VA → PA

8B16 ASI_SECONDARY_NO_FAULT_
LITTLE

VA → PA VA → PA

8C16–
BF16

Reserved DAE_invalid_asi DAE_invalid_asi

C016 ASI_PST8_P VA → PA VA → PA

C116 ASI_PST8_S VA → PA VA → PA

C216 ASI_PST16_P VA → PA VA → PA

C316 ASI_PST16_S VA → PA VA → PA

C416 ASI_PST32_P VA → PA VA → PA

C516 ASI_PST32_S VA → PA VA → PA

C616–
C716

Reserved DAE_invalid_asi DAE_invalid_asi

C816 ASI_PST8_PL VA → PA VA → PA

C916 ASI_PST8_SL VA → PA VA → PA

CA16 ASI_PST16_PL VA → PA VA → PA

CB16 ASI_PST16_SL VA → PA VA → PA

CC16 ASI_PST32_PL VA → PA VA → PA

CD16 ASI_PST32_SL VA → PA VA → PA

CE16–
CF16

Reserved DAE_invalid_asi DAE_invalid_asi

D016 ASI_FL8_P VA → PA VA → PA

D116 ASI_FL8_S VA → PA VA → PA

D216 ASI_FL16_P VA → PA VA → PA

D316 ASI_FL16_S VA → PA VA → PA

D416–
D716

DAE_invalid_asi DAE_invalid_asi

D816 ASI_FL8_PL VA → PA VA → PA

TABLE 12-9 DMMU Translation (3 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
82 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

12.6 Compliance With the SPARC V9 Annex F
The UltraSPARC T2 MMU complies completely with the SPARC V9 MMU
Requirements described in Annex F of the The SPARC Architecture Manual, Version 9.
TABLE 12-10 shows how various protection modes can be achieved, if necessary,
through the presence or absence of a translation in the I- or D-MMU.

D916 ASI_FL8_SL VA → PA VA → PA

DA16 ASI_FL16_PL VA → PA VA → PA

DB16 ASI_FL16_SL VA → PA VA → PA

DC16–
DF16

Reserved DAE_invalid_asi DAE_invalid_asi

E016 ASI_BLK_COMMIT_PRIMARY VA → PA VA → PA

E116 ASI_BLK_COMMIT_SECONDARY VA → PA VA → PA

E216 ASI_TWINX_P,
ASI_STBI_P

VA → PA VA → PA

E316 ASI_TWINX_S,
ASI_STBI_S

VA → PA VA → PA

E416–
E916

Reserved DAE_invalid_asi DAE_invalid_asi

EA16 ASI_TWINX_PL,
ASI_STBI_PL

VA → PA VA → PA

EB16 ASI_TWINX_PL,
ASI_STBI_PL

VA → PA VA → PA

EC16-
EF16

Reserved DAE_invalid_asi DAE_invalid_asi

F016 ASI_BLK_PRIMARY VA → PA VA → PA

F116 ASI_BLK_SECONDARY VA → PA VA → PA

F216-
F716

Reserved DAE_invalid_asi DAE_invalid_asi

F816 ASI_BLK_PRIMARY_LITTLE VA → PA VA → PA

F916 ASI_BLK_SECONDARY_LITTLE VA → PA VA → PA

FA16-
FF16

Reserved DAE_invalid_asi DAE_invalid_asi

TABLE 12-9 DMMU Translation (4 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
• 83

12.7 MMU Internal Registers and ASI
Operations

12.7.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the virtual processor through
ASIs defined by UltraSPARC T2.

See Section 12.5 for details on the behavior of the MMU during all other UltraSPARC
T2 ASI accesses.

If the low order three bits of the VA are non-zero in an LDXA/STXA to/from these
registers, a mem_address_not_aligned trap occurs. Writes to read-only, reads to
write-only, illegal ASI values, or illegal VA for a given ASI may cause a
DAE_invalid_asi trap.

TABLE 12-10 MMU Compliance With SPARC V9 Annex F Protection Mode

Condition

Resultant
Protection Mode

TTE in
D-MMU

TTE in
I-MMU

Writable
Attribute Bit

Yes No 0 Read-only

No Yes Don’t Care Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute

Note STXA to an MMU register does not require any subsequent
instructions such as a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the register effect will be visible to load / store /
atomic accesses. UltraSPARC T2 resolves all MMU register
hazards via an automatic synchronization on all MMU register
writes.

Caution UltraSPARC T2 does not check for out-of-range virtual
addresses during an STXA to any internal register; it simply
sign-extends the virtual address based on VA{47}. Software must
guarantee that the VA is within range.
84 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

12.7.2 Context Registers
UltraSPARC T2 supports a pair of primary and a pair of secondary context registers
per strand, which are shared by the I- and D-MMUs. Primary Context 0 and Primary
Context 1 are the primary context registers, and a TLB entry for a translating
primary ASI can match the context field with either Primary Context 0 or Primary
Context 1 to produce a TLB hit. Secondary Context 0 and Secondary Context 1 are
the secondary context registers, and a TLB entry for a translating secondary ASI can
match the context field with either Secondary Context 0 or Secondary Context 1 to
produce a TLB hit.

The Primary Context 0 and Primary Context 1 registers are defined as shown in
FIGURE 12-2, where pcontext is the context value for the primary address space.

FIGURE 12-2 Primary Context 0/1 register

The Secondary Context 0 and Secondary Context 1 Registers are defined in
FIGURE 12-3, where scontext is the context value for the secondary address space.

FIGURE 12-3 Secondary Context 0/1 Register

TABLE 12-11 UltraSPARC T2 MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI VA{63:0} Access Register or Operation Name

2116 816 Read/Write Primary Context 0 register

— 2116 1016 Read/Write Secondary Context 0 register

2116 10816 Read/Write Primary Context 1 register

— 2116 11016 Read/Write Secondary Context 1 register

Compatibility
Note

To maintain backward compatibility with software designed for
a single primary and single secondary context register, writes to
Primary (Secondary) Context 0 Register also update Primary
(Secondary) Context 1 Register.

63 13 12 0

— pcontext

63 13 12 0

— scontext
• 85

The contents of the Nucleus Context register are hardwired to the value zero:

FIGURE 12-4 Nucleus Context Register

63 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
86 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX A

Programming Guidelines

A.1 Multithreading
In UltraSPARC T2, each physical core contains eight strands. The strands are divided
into two thread groups, with strands 0–3 occupying one thread group and strands 4–
7 occupying the other.

Within a thread group, among the available strands, the least recently picked strand
is selected for execution every cycle. Thus, up to two instructions can be picked each
cycle.

Since each physical core has only one load/store unit and one floating-point and
graphics unit, only one load/store or FGU instruction may be picked each cycle. One
thread group can issue a load/store instruction while the other thread group issues
an FGU instruction. Arbitrating between the two thread groups is done with a least-
recently-picked mechanism, to ensure fairness.

Since context switching is built into the UltraSPARC T2 pipeline (via the D and P
stages), strands are switched each cycle with no pipeline stall penalty (except when
resource collisions occur, such as when both thread groups require the load/store
unit or the FGU).

In normal operation, UltraSPARC T2 speculates that most control-transfer
instructions will be “not taken” and that loads hit in the L1 data cache. An enable
bit, accessible to hyperprivileged software, controls whether UltraSPARC T2
speculates on these instructions or not.

The following instructions change a strand from available to unavailable until
hardware determines that their input/execution requirements can be satisfied:

■ CALL, DONE, RETRY, JMPL
■ LDFSR, LDXFSR, STFSR, STXFSR
■ All WRPR, WR
■ All RDPR, RD
■ SAVE(D), RESTORE(D), RETURN, FLUSHW (all register-window management)
87

■ All MUL and DIV
■ MULX, UMUL, SMUL, POPC
■ MEMBAR#, FLUSH
■ FCMP
■ All memory operations to/from alternate space
■ All atomic (load-store) operations
■ PREFETCH

If speculation is not enabled, the following instruction types also change a strand
from available to unavailable until hardware determines that their execution
requirements can be satisfied:

■ All control transfer instructions

■ All loads

A.2 Instruction Latency
TABLE A-1 lists the minimum single-strand instruction latencies for UltraSPARC T2.
When multiple strands are executing, some or much of the additional latency for
multicycle instructions will be overlapped with execution of the additional strands.

TABLE A-1 UltraSPARC T2 Instruction Latencies (1 of 8)

Opcode Description Latency Notes

ADD (ADDcc) Add (and modify condition codes) 1

ADDC (ADDCcc) Add with carry (and modify condition codes) 1

ALIGNADDRESS Calculate address for misaligned data access 1

ALIGNADDRESSL Calculate address for misaligned data access (little-endian) 1

ALLCLEAN Mark all windows as clean 25

AND (ANDcc) Logical and (and modify condition codes) 1

ANDN (ANDNcc) Logical and not (and modify condition codes) 1

ARRAY{8,16,32} 3-D address to blocked byte address conversion 6

Bicc Branch on integer condition codes 1 not-
taken, 6
taken

BMASK Write the GSR.mask field 25

BPcc Branch on integer condition codes with prediction 1 not-
taken, 6
taken
88 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

BPr Branch on contents of integer register with prediction 1 not-
taken, 6
taken

BSHUFFLE Permute bytes as specified by the GSR.mask field 6

CALL Call and link 6

CASA Compare and swap word in alternate space 20-30 Done in L2
cache

CASXA Compare and swap doubleword in alternate space 20-30 Done in L2
cache

DONE Return from trap 6

EDGE{8,16,32}{L}{
N}

Edge boundary processing {little-endian} {non-condition-code
altering}

6

FABS(s,d) Floating-point absolute value 6

FADD(s,d) Floating-point add 6

FALIGNDATA Perform data alignment for misaligned data 6

FANDNOT1{s} Negated src1 and src2 (single precision) 6

FANDNOT2{s} src1 and negated src2 (single precision) 6

FAND{s} Logical and (single precision) 6

FBPfcc Branch on floating-point condition codes with prediction 1 not-
taken, 6
taken

FBfcc Branch on floating-point condition codes 1 not-
taken, 6
taken

FCMP(s,d) Floating-point compare 6

FCMPE(s,d) Floating-point compare (exception if unordered) 6

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2 6

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2 6

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2 6

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2 6

FDIV(s,d) Floating-point divide 19 SP,
33 DP

FEXPAND Four 8-bit to 16-bit expand 6

FiTO(s,d) Convert integer to floating-point 6

TABLE A-1 UltraSPARC T2 Instruction Latencies (2 of 8)

Opcode Description Latency Notes
• 89

FLUSH Flush instruction memory variable

FLUSHW Flush register windows 25

FMOV(s,d) Floating-point move 6

FMOV(s,d)cc Move floating-point register if condition is satisfied 6

FMOV(s,d)R Move floating-point register if integer register contents satisfy
condition

6

FMUL(s,d) Floating-point multiply 6

FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding
components

6

FMUL8ULx16 Unsigned lower 8- x 16-bit partitioned product of
corresponding components

6

FMUL8x16 8- x 16-bit partitioned product of corresponding components 6

FMUL8x16AL Signed lower 8- x 16-bit lower α partitioned product of 4
components

6

FMUL8x16AU Signed upper 8- x 16-bit lower α partitioned product of 4
components

6

FMULD8SUx16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product
of components

6

FMULD8ULx16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned
product of components

6

FNAND{s} Logical nand (single precision) 6

FNEG(s,d) Floating-point negate 6

FNOR{s} Logical nor (single precision) 6

FNOT1{s} Negate (1’s complement) src1 (single precision) 6

FNOT2{s} Negate (1’s complement) src2 (single precision) 6

FONE{s} One fill (single precision) 6

FORNOT1{s} Negated src1 or src2 (single precision) 6

FORNOT2{s} src1 or negated src2 (single precision) 6

FOR{s} Logical or (single precision) 6

FPACKFIX Two 32-bit to 16-bit fixed pack 6

FPACK{16,32} Four 16-bit/two 32-bit pixel pack 6

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision) 6

FPMERGE Two 32-bit to 64-bit fixed merge 6

TABLE A-1 UltraSPARC T2 Instruction Latencies (3 of 8)

Opcode Description Latency Notes
90 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision) 6

FsMULd Floating-point multiply single to double 6

FSQRT(s,d) Floating-point square root 19 SP,
33 DP

FSRC1{s} Copy src1 (single precision) 6

FSRC2{s} Copy src2 (single precision) 6

F(s,d)TO(s,d) Convert between floating-point formats 6

F(s,d)TOi Convert floating point to integer 6

F(s,d)TOx Convert floating point to 64-bit integer 6

FSUB(s,d) Floating-point subtract 6

FXNOR{s} Logical xnor (single precision) 6

FXOR{s} Logical xor (single precision) 6

FxTO(s,d) Convert 64-bit integer to floating-point 6

FZERO{s} Zero fill (single precision) 6

ILLTRAP Illegal instruction

INVALW Mark all windows as CANSAVE 6

JMPL Jump and link 6

LDBLOCKF 64-byte block load 32

LDD Load doubleword 3

LDDA Load doubleword from alternate space variable

LDDF Load double floating-point 3

LDDFA Load double floating-point from alternate space variable

LDF Load floating-point 3

LDFA Load floating-point from alternate space variable

LDFSR Load floating-point state register lower 1-8 pre-sync to
previous
FGU op
from that
thread

LDSB Load signed byte 3

LDSBA Load signed byte from alternate space variable

LDSH Load signed halfword 3

TABLE A-1 UltraSPARC T2 Instruction Latencies (4 of 8)

Opcode Description Latency Notes
• 91

LDSHA Load signed halfword from alternate space variable

LDSTUB Load-store unsigned byte 3

LDSTUBA Load-store unsigned byte in alternate space variable

LDSW Load signed word 3

LDSWA Load signed word from alternate space variable

LDUB Load unsigned byte 3

LDUBA Load unsigned byte from alternate space variable

LDUH Load unsigned halfword 3

LDUHA Load unsigned halfword from alternate space variable

LDUW Load unsigned word 3

LDUWA Load unsigned word from alternate space variable

LDX Load extended 3

LDXA Load extended from alternate space variable

LDXFSR Load extended floating-point state register 1-8 pre-sync to
previous
FGU op
from that
thread

MEMBAR Memory barrier variable

MOVcc Move integer register if condition is satisfied 1

MOVr Move integer register on contents of integer register 1

MULScc Multiply step (and modify condition codes)

MULX Multiply 64-bit integers 5

NOP No operation 1

NORMALW Mark other windows as restorable 25

OR (ORcc) Inclusive-or (and modify condition codes) 1

ORN (ORNcc) Inclusive-or not (and modify condition codes) 1

OTHERW Mark restorable windows as other 6

PDIST Distance between eight 8-bit components 6 1 per 2
cycles

POPC Population count 5

PREFETCH Prefetch data variable >6

TABLE A-1 UltraSPARC T2 Instruction Latencies (5 of 8)

Opcode Description Latency Notes
92 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

PREFETCHA Prefetch data from alternate space variable >6

RDASI Read ASI register variable

RDASR Read ancillary state register variable

RDCCR Read condition codes register variable

RDFPRS Read floating-point registers state register variable

RDPC Read program counter variable

RDPR Read privileged register variable

RDTICK Read TICK register variable

RDY Read Y register variable

RESTORE Restore caller’s window 6

RESTORED Window has been restored 6

RETRY Return from trap and retry

RETURN Return 7

SAVE Save caller’s window 6

SAVED Window has been saved 6

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes) 12-41

SDIVX 64-bit signed integer divide 12-41

SETHI Set high 22 bits of low word of integer register 1

SIAM Set interval arithmetic mode 6

SLL Shift left logical 1

SLLX Shift left logical, extended 1

SMUL (SMULcc) Signed integer multiply (and modify condition codes) 5

SRA Shift right arithmetic 1

SRAX Shift right arithmetic, extended 1

SRL Shift right logical 1

SRLX Shift right logical, extended 1

STB Store byte 1

STBA Store byte into alternate space

STBAR Store barrier variable

TABLE A-1 UltraSPARC T2 Instruction Latencies (6 of 8)

Opcode Description Latency Notes
• 93

STBLOCKF 64-byte block store 16 Assuming
store buffer
empty when
STBLOCKF
decodes

STD Store doubleword 1

STDA Store doubleword into alternate space

STDF Store double floating-point 1

STDFA Store double floating-point into alternate space

STF Store floating-point 1

STFA Store floating-point into alternate space

STFSR Store floating-point state register 1-8 pre-sync to
previous
FGU op
from that
thread

STH Store halfword 1

STHA Store halfword into alternate space

STPARTIALF Eight 8-bit/4 16-bit/2 32-bit partial stores 1

STW Store word 1

STWA Store word into alternate space

STX Store extended 1

STXA Store extended into alternate space variable

STXFSR Store extended floating-point state register

SUB (SUBcc) Subtract (and modify condition codes) 1

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 1

SWAP Swap integer register with memory 20-30 Done in L2
cache

SWAPA Swap integer register with memory in alternate space 20-30 Done in L2
cache

TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow) 1 If no trap, 6
if trap

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on
overflow)

1 If no trap, 6
if trap

TABLE A-1 UltraSPARC T2 Instruction Latencies (7 of 8)

Opcode Description Latency Notes
94 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if
bit 7 is set, trap to hyperprivileged)

1 If no trap, 6
if trap

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes) 12-41

UDIVX 64-bit unsigned integer divide 12-41

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes) 5

WRASI Write ASI register

WRASR Write ancillary state register variable

WRCCR Write condition codes register 25

WRFPRS Write floating-point registers state register 25

WRPR Write privileged register variable

WRY Write Y register 25

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 1

XOR (XORcc) Exclusive-or (and modify condition codes) 1

TABLE A-1 UltraSPARC T2 Instruction Latencies (8 of 8)

Opcode Description Latency Notes
• 95

96 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX B

IEEE 754 Floating-Point Support

UltraSPARC T2 conforms to the SPARC V9 Appendix B (IEEE Std 754-1985
Requirements for SPARC-V9) recommendation.

B.1 Special Operand Handling
The UltraSPARC T2 FGU follows the UltraSPARC I/UltraSPARC II handling of
special operands instead of that used in UltraSPARC T1. While UltraSPARC T1
provides full hardware support for subnormal operands and results, UltraSPARC T2
generates an fp_exception_other exception (with FSR.ftt = unfinished_FPop) in some
cases. In addition, UltraSPARC T2 implements a nonstandard floating-point mode
(enabled when FSR.ns = 1), whereas UltraSPARC T1 does not.

The FGU generates +∞, −∞, +largest number, −smallest number (depending on
round mode) for overflow cases for multiply, divide, and add operations.

For higher-to-lower precision conversion instructions FdTOs:

■ Overflow, underflow, and inexact exceptions can be raised

■ Overflow is treated the same way as an unrounded add result: Depending on
the round mode, we will either generate the properly signed infinity or largest
number.

■ Underflow for subnormal or gross underflow results: (see Subnormal Handling
on page 106).

For conversion to integer instructions {F<s|d>TOi, F<s|d>TOx}: UltraSPARC T2
follows The SPARC Architecture Manual-Version 9 (appendix B.5, pg 246.

For NaN’s: UltraSPARC T2 follows The SPARC Architecture Manual-Version 9
appendix B.2 (particularly Table 27) and B.5, pg 244-246.

Note UltraSPARC T2 detects tininess before rounding.
97

■ Please note that Appendix B applies to those instructions listed in IEEE 754
section 5: “All conforming implementations of this standard shall provide
operations to add, subtract, multiply, divide, extract the sqrt, find the remainder,
round to integer in fp format, convert between different fp formats, convert
between fp and integer formats, convert binary<->decimal, and compare.
Whether copying without change of format is considered an operation is an
implementation option.”

■ The instructions involving copying/moving of fp data (FMOV, FABS, and FNEG)
will follow earlier UltraSPARC implementations by doing the appropriate sign bit
transformation but will not cause an invalid exception nor do a rs2 = SNaN to
rd = QNaN transformation.

■ Following UltraSPARC II/UltraSPARC III implementations, all Fpops as defined
in V9 will update cexc. All other instructions will leave cexc unchanged.

The remainder of this section gives examples of special cases to be aware of that
could generate various exceptions.

B.1.1 Infinity Arithmetic
Let “num” be defined as unsigned in the following tables.

B.1.1.1 One Infinity Operand Arithmetic
■ Do not generate exceptions.

TABLE B-1 One-Infinity Operations That Do Not Generate Exceptions

Cases

+∞ plus +num = +∞
+∞ plus -num = +∞
-∞ plus +num = −∞
-∞ plus -num = −∞
+∞ minus +num = +∞
+∞ minus -num = +∞
-∞ minus +num = −∞
-∞ minus −num = −∞
+∞ multiplied by +num = +∞
+∞ multiplied by -num = −∞
−∞ multiplied by +num = −∞
−∞ multiplied by −num = +∞
+∞ divided by +num = +∞
+∞ divided by −num = −∞
−∞ divided by +num = −∞
−∞ divided by −num = +∞
98 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

+num divided by +∞ = +0
+num divided by -∞ = −0
−num divided by +∞ = −0
−num divided by −∞ = +0

FsTOd, FdTOs (+∞) = +∞
FsTOd, FdTOs (−∞) = −∞
sqrt(+∞) = +∞
+∞ divided by +0 = +∞
+∞ divided by −0 = −∞
−∞ divided by +0 = −∞
−∞ divided by −0 = +∞
Any arithmetic operation involving infinity as one operand and a QNaN as the other operand:
V9, B.2.2, Table 27.
(± ∞) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (± ∞) = QNaN1

Compares when other operand is not a NaN treat infinity just like a regular number:
+∞ = +∞, +∞ > anything else;
−∞ = −∞, −∞ < anything else.
Effects following instructions:
V9 fp compares (rs1 and/or rs2 could be ± ∞):

* FCMPE
* FCMP

Compares when other operand is a QNaN, SPARC V9 A.13, B.2.1; fcc value = unordered = 112
FCMP(s,d) (± ∞) with (QNaN2) – no invalid exception
FCMP(s,d) (QNaN1) with (±∞) – no invalid exception

TABLE B-1 One-Infinity Operations That Do Not Generate Exceptions (Continued)

Cases
• 99

■ Could generate exceptions

1. Similar invalid exceptions also included in SPARC V9 B.5 are generated when the source operand
is a NaN(QNaN or SNaN) or a resulting number that cannot fit in 32-bit[64-bit] integer format:

(large positive argument ≥ 231[263] or large negative argument

≤ −(231 + 1)[−(263+1)]

TABLE B-2 One Infinity Operations That Could Generate Exceptions

Cases Possible Exception
Result (in addition to accrued
exception) if tem is cleared

V9, Appendix B.51

F<s|d>TOi (+∞) = invalid
F<s|d>TOx (+∞) = invalid

F<s|d>TOi (−∞) = invalid
F<s|d>TOx (−∞) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

231−1
263−1

−231

−263

V9, B.2.2
sqrt(−∞) = invalid

+∞ multiplied by +0 = invalid
+∞ multiplied by −0 = invalid
−∞ multiplied by +0 = invalid
−∞ multiplied by −0 = invalid

IEEE_754 7.1
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN

QNaN
QNaN
QNaN
QNaN

V9, B.2.2, Table 272

Any arithmetic operation involving infinity
as one operand and SNaN as the other
operand except copying/moving data
(± ∞) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

V9, A.13, B.2.12

Any compare operation involving infinity as
one operand and a SNaN as the other
operand:
FCMP<s|d> (± ∞) with (SNaN2)
FCMP<s|d> (SNaN1) with (± ∞)

FCMPE<s|d> (± ∞) with (SNaN2)
FCMPE<s|d> (SNaN1) with (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 112
fcc value = unordered = 112

fcc value = unordered = 112
fcc value = unordered = 112

V9, A.132

Any compare & generate exception operation
involving infinity as 1 operand and a QNaN
as the other operand:

FCMPE<s|d> (± ∞) with (QNaN2)
FCMPE<s|d> (QNaN1) with (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b112
fcc value = unordered = 2’b112
100 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

2. Note that in the IEEE 754 standard, infinity is an exact number; so this exception could also
applies to non-infinity operands as well. Also note that the invalid exception and SNaN to QNaN
transformation does not apply to copying/moving fpops (FMOV, FABS, FNEG).

B.1.1.2 Two Infinity Operand Arithmetic
■ Do not generate exceptions

TABLE B-3 Two Infinity Operations That Do Not Generate Exceptions

Cases

+∞ plus +∞ = +∞
−∞ plus −∞ = −∞
+∞ minus −∞ = +∞
−∞ minus +∞ = −∞
+∞ multiplied by +∞ = +∞
+∞ multiplied by −∞ = −∞
−∞ multiplied by +∞ = −∞
−∞ multiplied by −∞ = +∞
Compares treat infinity just like a regular number:
+∞ = +∞, +∞ > anything else;
−∞ = −∞, −∞ < anything else.
Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be ± ∞):

* FCMPE
* FCMP
• 101

■ Could generate exceptions

TABLE B-4 Two Infinity Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, B.2.2
+∞ plus −∞ = invalid
−∞ plus +∞ = invalid

+∞ minus +∞ = invalid
−∞ minus −∞ = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN

QNaN
QNaN

V9, B.2.2
+∞ divided by +∞ = invalid
+∞ divided by −∞ = invalid
−∞ divided by +∞ = invalid
−∞ divided by −∞ = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN
QNaN
QNaN
102 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

B.1.2 Zero Arithmetic

1.In this context, 0 is again another exact number; so this exception could also applies to non-zero
operands as well. Also note that the invalid exception and SNaN to QNaN transformation does
not apply to copying/moving data instructions (FMOV, FABS, FNEG)

TABLE B-5 Zero Arithmetic Operations that generate exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, B.2.2 & 5.1.7.10.4
+0 divided by +0 = invalid
+0 divided by −0 = invalid
−0 divided by +0 = invalid
−0 divided by −0 = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand
result)
QNaN
QNaN
QNaN
QNaN

V9. 5.1.7.10.4
+num divided by +0 = divide by zero
+num divided by −0 = divide by zero
−num divided by +0 = divide by zero
−num divided by −0 = divide by zero

IEEE_754 7.2
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero

+∞
−∞
−∞
+∞

V9, B.2.2 Table 271

Any arithmetic operation involving
zero as 1 operand and a SNaN as the
other operand except copying/moving
data
(± 0) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± 0)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

TABLE B-6 Interesting Zero Arithmetic Sign Result Case

Cases

+0 plus −0 = +0 for all round modes except round to −infinity where the
result is −0.

sqrt (−0) = −0
• 103

B.1.3 NaN Arithmetic
■ Do not generate exceptions

■ Could Generate Exceptions

TABLE B-7 NaN Arithmetic Operations That Do Not Generate Exceptions

Cases

V9, B.2.1: Fp convert to wider NaN transformation
FsTOd (QNaN2) = QNaN2 widened

FsTOd (7FD1 000016) = 7FFA 2000 0000 000016
FsTOd (FFD1 000016) = FFFA 2000 0000 000016

V9, B.2.1: Fp convert to narrower NaN transformation
FdTOs (QNaN2) = QNaN2 narrowed

FdTOs (7FFA 2000 0000 000016) = 7FD 100016
FdTOs (FFFA 2000 0000 000016) = FFD 100016

V9, B.2.2 Table 27
Any noncompare arithmetic operations. Result takes sign of QNaN pass through operand.
[Note this rule is applicable to sqrt(QNaN2) = QNaN2 as well].
(± num) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (± num) = QNaN1
(QNaN1) OPERATOR (QNaN2) = QNaN2

TABLE B-8 NaN Arithmetic Operations That Could Generate Exceptions

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared

V9, B.2.1: Fp convert to wider NaN transformation
FsTOd (SNaN2) = QSNaN2 widened

FsTOd (7F91 000016) = 7FFA 2000 0000 000016
FsTOd (FF91 000016) = FFFA 2000 0000 000016

IEEE_754 7.1

IEEE_754 invalid QSNaN2
widened

V9, B.2.1: Fp convert to narrower NaN transformation
FdTOs (SNaN2) = QSNaN2 narrowed

FdTOs (7FF2 2000 0000 000016) = 7FD 100016
FdTOs (FFF2 2000 0000 000016) = FFD 100016

IEEE_754 7.1

IEEE_754 invalid QSNaN2
narrowed
104 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

B.1.4 Special Inexact Exceptions
UltraSPARC T2 follows SPARC V9 5.1.7.10.5 (IEEE_754 Section 7.5) and sets
FSR_inexact whenever the rounded result of an operation differs from the infinitely
precise unrounded result.

V9, B.2.2 Table 27
Any noncompare arithmetic operations except copying/moving
(FMOV, FABS, FNEG) [Note this rule applies to
sqrt(SNaN2) = QNaN2 and invalid exception as well]
(± num) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± num)
(SNaN1) OPERATOR (SNaN2)
(QNaN1) OPERATOR (SNaN2)
(SNaN1) OPERATOR (QNaN2)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

QSNaN2
QSNaN1
QSNaN2
QSNaN2
QSNaN1

V9, Appendix B.5
F<s|d>TOi (+QNaN) = invalid
F<s|d>TOi (+SNaN) = invalid
F<s|d>TOx (+QNaN) = invalid
F<s|d>TOx (+SNaN) = invalid

F<s|d>TOi (−QNaN) = invalid
F<s|d>TOi (−SNaN) = invalid
F<s|d>TOx (−QNaN) = invalid
F<s|d>TOx (−SNaN) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

231−1
231−1
263−1
263−1

−231

−231

−263

−263

TABLE B-8 NaN Arithmetic Operations That Could Generate Exceptions (Continued)

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared
• 105

Additionally, there are a few special cases to be aware of:

B.2 Subnormal Handling
The UltraSPARC T2 FGU follows the UltraSPARC I/UltraSPARC II subnormal
handling instead of that used in UltraSPARC T1. While UltraSPARC T1 provides full
hardware support for subnormal operands and results, UltraSPARC T2 generates an
unfinished_FPop trap type in some cases. In addition, UltraSPARC T2 implements a
nonstandard floating-point mode, whereas UltraSPARC T1 does not.

UltraSPARC T2 provides limited subnormal support in hardware when in standard
mode (FSR.ns = 0) or interval arithmetic mode (GSR.im = 1) [Note that when
GSR.im = 1, regardless of FSR.ns, UltraSPARC T2 operates in standard mode.]:

TABLE B-9 Fp ↔ Int Conversions With Inexact Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, A.14: Fp convert to 32-bit integer when source operand lies
between −(231−1) and 231 but is not exactly an integer.
FsTOi, FdTOi.

IEEE_754 7.5

IEEE_754 inexact An integer number

V9, A.14: Fp convert to 64-bit integer when source operand lies
between −(263−1) and 263 but is not exactly an integer.
FsTOx, FdTOx.

IEEE_754 7.5

IEEE_754 inexact An integer number

V9, A.15: Convert integer to fp format when 32-bit integer source
operand magnitude is not exactly representable in single precision
(23-bit mantissa). Note, even if the operand is > 224−1, if enough of
its trailing bits are zeros, it may still be exactly representable.
FiTOs.

IEEE_754 7.5

IEEE_754 inexact An SP number

V9, A.15: Convert integer to fp format when 64-bit integer source
operand magnitude is not exactly representable in single precision
(23-bit mantissa). Note, even if the operand is > 224−1, if enough of
its trailing bits are zeros, it may still be exactly representable.
FxTOs.

IEEE_754 7.5

IEEE_754 inexact An SP number

V9, A.15: Convert integer to fp format when 64-bit integer source
operand magnitude is not exactly representable in double
precision (52-bit mantissa). Note, even if the operand is > 253−1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOd.

IEEE_754 7.5

IEEE_754 inexact A DP number
106 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

■ UltraSPARC T2 supports full subnormal operand handling for single and double
precision fp compares;

■ UltraSPARC T2 supports gross underflow results for fp-to-fp conversions from
higher to lower precision (FdTOs);

■ UltraSPARC T2 supports gross underflow results in hardware for FMUL(s,d) and
FDIV(s,d) which gives 90% of the optimal underflow performance at a fraction of
the cost to completely support subnormal operands and results;

■ For those instructions without any subnormal support, an unfinished trap is
taken.

UltraSPARC T2 supports the following in nonstandard mode ((FSR.ns = 1) and
(GSR.im = 0)):

■ Subnormal operands and results are flushed to zero with the same sign, and
execution is allowed to proceed without incurring the performance cost of an
unfinished trap.

TABLE B-11 and TABLE B-12 show how each instruction type is explicitly handled.

Handling of the FMUL<s|d>, FDIV<s|d>, FdTOs instructions requires a few
additional definitions:

■ Let Signr = sign of result, RP = round to +infinity, RM = round to −infinity. Define
RND as round mode bits. In standard mode, these can have two different sources:

When in typical standard mode ((FSR.ns = 0) and (GSR.im = 0)),
RND = FSR.rd

When in interval arithmetic mode (GSR.im = 1), RND = GSR.irnd

■ Let E(rs1) = biased exponent of rs1 operand, and E(rs2) = biased exponent of rs2
operand

■ Let Er = unnormalized and unrounded biased exponent result

For FMUL<s|d>: Er = E(rs1) + E(rs2) − EBIAS(P)

For FDIV<s|d>: Er = E(rs1) − E(rs2) + EBIAS(P) − 1

For FdTOs: Er = E(rs2) − EBIAS(P_rs2) + EBIAS(P_rd), where P_rs2 is the
larger precision of the source and P_rd is the smaller precision of the
destination

■ Let Ef = final normalized and rounded biased exponent result
• 107

■ Define constants dependent on precision type (see TABLE B-10)

FIGURE B-1 Single Precision Unbiased vs. Biased Subnormals and Gross Underflow

■ Note that even though 0 ≤ [E(rs1) or E(rs2)] ≤ 255 for each single precision biased
operand exponent, the computed Er can be 0 ≤ Er ≤ 255 or can even be negative.
For example, for a FMULS instruction:

If E(rs1) = E(rs2) = +127, then Er = 127 + 127 −127 = +127

If E(rs1) = E(rs2) = 0, then Er = 0 + 0 - 127 = −127

■ Following the sections 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10 of The SPARC
Architecture Manual-Version 9, Overflow Result is defined as follows:

If the appropriate trap enable masks are not set (FSR.ofm = 0 and
FSR.nxm = 0), then set aexc and cexc overflow and inexact flags:
FSR.ofa = 1, FSR.nxa = 1, FSR.ofc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ofm = 1 or
FSR.nxm = 1), then only an IEEE overflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from previous UltraSPARC I/
UltraSPARC II implementations to follow the SPARC V9 section 5.1.7.9
errata:

If FSR.ofm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

TABLE B-10 Subnormal Handling Constants Per Destination Precision Type

Precision (P)

Number of
exponent field
bits

Exponent Bias
(EBIAS)

Exponent Max
(EMAX)

Exponent Gross
Underflow (EGUF)

Single 8 127 255 −25

Double 11 1023 2047 −54

+127 +254

+255

+1

0
-25

(∞, NaNs)

normal number > 1normal number < 1

(0, subnormal numbers)

8b representable Biased E

gross
subnormal numbersunderflow
108 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

If FSR.ofm = 1, independent of FSR.nxm, then FSR.ofc = 1 and
FSR.nxc = 0.

■ Following the sections 5.1.7.6, 5.1.7.8, 5.1.7.9 and figures in 5.1.7.10 of The SPARC
Architecture Manual-Version 9, Gross Underflow Zero Result is defined as follows:

Result = 0 (with correct sign)

If the appropriate trap enable masks are not set (FSR.ufm=0 and
FSR.nxm = 0), then set aexc and cexc underflow and inexact flags:
FSR.ufa = 1, FSR.nxa = 1, FSR.ufc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ufm = 1 or
FSR.nxm = 1), then only an IEEE underflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/
UltraSPARC II implementations to follow the SPARC V9 section 5.1.7.9
errata:

If FSR.ufm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ufm = 1, independent of FSR.nxm, then FSR.ufc = 1 and
FSR.nxc = 0.

■ Subnormal handling is overridden for the following cases:

■ Result is a QNaN or SNaN — by The SPARC Architecture Manual-Version 9
Appendix B.2.2 (Table 27).

Define “OP_NaN” as instruction uses a SNaN or QNaN operand.

Examples:

subnormal + SNaN = QNaN with invalid exception (No unfinished trap in
standard mode and no FSR.nx in nonstandard mode)

subnormal + QNaN = QNaN, no exception (No unfinished trap in
standard mode and no FSR.nx in nonstandard mode)

■ Result already generates an exception.

Define “OP_lt_0” as instruction uses an operand less than zero.

Examples:

sqrt(number less than zero) = invalid

■ Result is infinity.

Define “OP_inf” as instruction uses infinity operand.

Examples:

subnormal +∞ = ∞ (No unfinished trap in standard mode and no FSR.nx
in nonstandard mode)

subnormal × ∞ = ∞ in standard mode; subnormal × ∞ = QNaN with
invalid exception in nonstandard mode since subnormal is flushed to zero.

■ Result is zero.

Define “OP_0” as instruction uses a zero operand
• 109

In

S
P
s
[
F

S
P
F
[
F

S
P
m
[

Example:

subnormal × 0 = 0 (No unfinished trap in standard mode, and no FSR.nx
in nonstandard mode)

B.2.1 One or Both Subnormal Operands

TABLE B-11 One or Both Subnormal Operands Handling (1 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode

ingle/Double
recision add,
ubtract
FADD<s|d>,
SUB<s|d>]

if (not (OP_NaN or OP_inf)) {
generate unfinished trap

}

if (not(OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0
with the same sign
FSR.nx ← 1

}

ingle/Double
recision
PCOMPARE
FCMP<s|d>,
CMPE<s|d>]

if (not OP_NaN) {
execute the compare using the subnormal

operand(s)
}

if (not OP_NaN) {
executes the compare using the subnormal
operand(s)3

}

ingle/Double
recision
ultiply

FMUL<s|d>]

if (not (OP_NaN or OP_inf or OP_0)) {
If ((Er > EGUF(P))

or
(Er ≤ EGUF(P) and Signr=0 and

RND=RP)
or
(Er ≤ EGUF(P) and Signr=1 and

RND=RM))
{generate unfinished trap}

else {
generate gross underflow zero

result1 }
}

if (not(OP_NaN or OP_0) {
if (not(OP_inf)) {
executes w/subnormal operand flushed to 0 with
the same sign

FSR.nx ← 1
} else { // 1 op is subnormal, other is ∞

executes w/subnormal operand flushed to 0
with the same sign

FSR.nv ← 1 & return QNaN
}

}

110 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

S
p
d
[

S
d
p
m
[

In
ingle/double
recision
ivide

FDIV<s|d>]

if (not (OP_NaN or OP_inf or OP_0)) {
if (not (Ef > EMAX(P))) {

// not overflow
if ((Er > EGUF(P))

or
(Er ≤ EGUF(P) and (Signr=0)

and (RND=RP))
or
(Er ≤ EGUF(P) and (Signr=1)

and (RND=RM)))
{

generate unfinished trap
} else {
generate gross-underflow zero

result1

}
} else {

generate overflow result2

}
}

if (not(OP_NaN) {
if (not(OP_inf or OP_0) {

executes w/subnormal operand flushed to 0
with the same sign
if (rs1 and rs2 are flushed to zero) {

FSR.nv ← 1 // 0 ÷ 0 is invalid
} else if (rs2 divisor is flushed to zero) {

FSR.dz ← 1
} else {

FSR.nx ← 1
}

} else if (OP_inf) { // 1 op is subnormal,
// other = ∞

executes w/subnormal operand flushed
to 0 with the same sign

// 0 ÷ ∞ is 0, and ∞ ÷ 0 is ∞
No exceptions are set.
Even if divisor is flushed to zero: no need
to set FSR.dz

} else if (OP_0) { // 1 op subnorm, other = 0
executes w/subnormal operand flushed to 0
with the same sign

// 0 ÷ 0 is invalid exception
FSR.nv ← 1 // overrides FSR.dz

}
}

ingle to
ouble
recision
ultiply

FSMULD]

if (not (OP_NaN or OP_inf or OP_0)) {
generate unfinished trap

}

if (not(OP_NaN or OP_0) {
if (not(OP_inf)) {

executes w/subnormal operand flushed to 0
with the same sign
Set FSR.nx

} else { // 1 op is subnormal, other is ∞
executes w/subnormal operand flushed to 0

with the same sign
Set FSR.nv & return QNaN

}
}

TABLE B-11 One or Both Subnormal Operands Handling (Continued) (2 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode
• 111

S
P
s
[
(
o
in

F
F
D
c
[
F
F
F
(
o
in

F
S
c
[
s
o
in

In
1. See gross underflow zero result definition on page 109.
2. See overflow definition on page 109.
3. This errata (not flushing subnormal operands to zero for only single and double precision fpcom-

pares) ensures UltraSPARC T2 is backward compatible with UltraSPARC I/UltraSPARC II and
UltraSPARC III.

ingle/Double
recision
quare root
FSQRT(s,d)]
*note: single
perand
struction)

if (not (OP_NaN or OP_inf)) {
if (OP_lt_0) {

FSR.nv ← 1 & return QNaN
} else {

generate unfinished trap
}

}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
if (OP_lt_0) { //that is, subnormal

FSR.nx ← 1; return −0
} else if (OP_eq_0) { //that is, 0

No exception; return 0 with same sign
} else {

FSR.nx ← 1
}

}

p to Int and
p Single to
ouble

onversion
FsTOx,
dTOx, FsTOi,
dTOi,
sTOd]
*note single
perand
structions)

if (not (OP_NaN or OP_inf)) {
generate unfinished trap

}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
FSR.nx ← 1

}

p Double to
ingle
onversion
FdTOs] (*note
ingle
perand
struction)

if (not (OP_NaN or OP_inf)) {
if ((Signr = 0 and RND = RP)

or
(Signr = 1 and RND = RM)) {

generate unfinished trap
} else {

generate gross underflow zero result1

}
}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
FSR.nx ← 1

}

TABLE B-11 One or Both Subnormal Operands Handling (Continued) (3 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode
112 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

B.2.2 Normal Operand(s) Giving Subnormal Result

1. See gross underflow zero result definition on page 109.

■ For those instructions found in TABLE B-11 but not in TABLE B-12, TABLE B-11 is
sufficient for their subnormal handling; so the additional rules in TABLE B-12 need
not be applied.

■ Multiplies that include a conversion from a smaller to larger precision (FSMULD)
are not included in TABLE B-12 along with FMUL<s|d> because the larger
precision result’s exponent range is sufficient to represent a number that would
have underflowed in the smaller precision’s exponent range.

TABLE B-12 Subnormal Result Handling for Two Normal Operands

Instructions (FSR.ns = 0) or (GSR.im = 1) (FSR.ns = 1) and (GSR.im = 0)

Single/Double
Precision
add, subtract
[FADD<s|d>),
FSUB<s|d>]

Generate unfinished trap Generate gross underflow zero
result1

Single/Double
Precision
multiply
[FMUL<s|d>]
and divide
[FDIV<s|d>], Fp
double-to-single
conversion
[FdTOs] (*note
single operand
instruction)

if (not (Ef >= 1)) { // that is, not subnormal
intermediate result that rounded to normalized
result

if ((1 > Er > EGUF(P))
or

(Er ≤ EGUF(P) and Signr = 0 and RND = RP)
or

(Er ≤ EGUF(P) and Signr = 1 and RND =
RM)) {

generate unfinished trap
}
else {

generate gross underflow zero result1

}
} else {

generate normalized result
}

Generate gross underflow zero
result1
• 113

114 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX C

Differences From UltraSPARC T1

C.1 General Architectural and
Microarchitectural Differences
UltraSPARC T2 follows the CMT philosophy of UltraSPARC T1, but adds more
execution and cryptography capability to each physical core, as well as significant
system-on-a-chip components and an enhanced L2 cache. The following lists the
microarchitectural differences:

■ Physical core consists of two integer execution pipelines and a single floating-
point pipeline. UltraSPARC T1 had a single integer execution pipeline and all
cores shared a single floating-point pipeline.

■ Each physical core in UltraSPARC T2 supports eight strands, which all share the
floating-point pipeline. The eight strands are partitioned into two groups of four
strands, each of which shares an integer pipeline. UltraSPARC T1 shared the
single integer pipeline among four strands.

■ Pipeline in UltraSPARC T2 is eight stages, two stages longer than UltraSPARC T1.

■ Instruction cache is 8-way associative, compared to 4-way in UltraSPARC T1.

■ The L2 cache is 4 Mbyte, 8-banked and 16-way associative, compared to 3 Mbyte,
4-banked and 12-way associative in UltraSPARC T1.

C.2 ISA Differences
There are a number of ISA differences between UltraSPARC T2 and UltraSPARC T1,
as follows:

■ UltraSPARC T2 fully supports all VIS 2.0 instructions. UltraSPARC T1 supports a
subset of VIS 1.0 plus SIAM (the remainder of VIS 1.0 and 2.0 instructions trap to
software for emulation, on UltraSPARC T1).
115

■ UltraSPARC T2 supports ALLCLEAN, INVALW, NORMALW, OTHERW, POPC,
and FSQRT<s|d> in hardware.

■ UltraSPARC T2 has a floating-point unit that generates fp_unfinished_operation
for most denorm cases and supports a nonstandard mode that flushes denorms to
zero, as described in Appendix B. UltraSPARC T1 handles denorms in hardware,
never generates an FP_unfinished_operation trap and does not support a
nonstandard mode.

■ UltraSPARC T2 generates an illegal_instruction trap on any quad-precision FP
instruction, while UltraSPARC T1 generates an fp_exception_other trap on
numeric and move-FP-quad instructions. See Table 5-2 on page 24.

■ UltraSPARC T2 generates a privileged_action exception upon attempted access to
hyperprivileged ASIs by privileged software whereas, in such cases, UltraSPARC
T1 takes a data_access_exception exception.

■ UltraSPARC T2 supports PSTATE.tct; UltraSPARC T1 did not.

■ UltraSPARC T2 implements SAVE similar to all previous UltraSPARC processors.
UltraSPARC T1 implements a SAVE that updates the locals in the new window to
be the same as the locals in the old window, and swaps the ins (outs) of the old
window with the outs (ins) of the new widow.

■ PSTATE.am masking details differ between UltraSPARC T1 and UltraSPARC T2,
as described in Section 11.1.7, Address Masking (Impdep #125), on page 64.

C.3 MMU Differences
The UltraSPARC T2 MMU is described in Chapter 12. The UltraSPARC T2 and
UltraSPARC T1 MMUs differ as follows:

■ UltraSPARC T2 supports a pair of primary context registers and a pair of
secondary context registers. UltraSPARC T1 supports a single primary context
and single secondary context register.

■ UltraSPARC T2 supports only the sun4v TTE format. UltraSPARC T1 supports
both the sun4v and the sun4u TTE formats.

■ UltraSPARC T2 is compatible with UltraSPARC Architecture 2007 with regard to
multiple flavors of data access exception (DAE_*) and instruction access exception
(IAE_*). UltraSPARC T1 uses the UltraSPARC single flavor of
data_access_exception and instruction_access_exception.

■ UltraSPARC T1 and UltraSPARC T2 support the same four page sizes (8 Kbyte, 64
Kbyte, 4 Mbyte, 256 Mbyte). UltraSPARC T2 supports an unsupported_page_size
trap when an illegal page size is programmed into TSB registers or attempted to
be loaded into the TLB. UltraSPARC T1 forces an illegal page size being
116 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

programmed into TSB registers to be 256 Mbytes and generates a
data_access_exception trap when a page with an illegal size is loaded into the
TLB.

C.4 Performance Instrumentation
Differences
Both UltraSPARC T1 and UltraSPARC T2 provide access to hardware performance
counters through the PIC and PCR registers. However, the events captured by the
hardware differ significantly between UltraSPARC T1 and UltraSPARC T2, with
UltraSPARC T2 capturing a much larger set of events, as described in Chapter 10.
• 117

118 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX D

Caches and Cache Coherency

D.1 Cache and Memory Interactions
This appendix describes various interactions between the caches and memory, and
the management processes that an operating system must perform to maintain data
integrity in these cases. In particular, it discusses the following:

■ Invalidation of one or more cache entries—when and how to do it

■ Differences between cacheable and noncacheable accesses

■ Ordering and synchronization of memory accesses

■ Accesses to addresses that cause side effects (I/O accesses)

■ Nonfaulting loads

■ Cache sizes, associativity, replacement policy, etc.

D.2 Cache Flushing
Data in the level-1 (read-only or writethrough) caches can be flushed by invalidating
the entry in the cache (in a way that also leaves the L2 directory in a consistent
state). Modified data in the level-2 (writeback) cache must be written back to
memory when flushed.

Cache flushing is required in the following cases:

■ I-cache: Flush is needed before executing code that is modified by a local store
instruction. This is done with the FLUSH instruction.

■ D-cache: Flush is needed when a physical page is changed from (physically)
cacheable to (physically) noncacheable. This is done with a displacement flush
(Displacement Flushing, below).
119

■ L2 cache: Flush is needed for stable storage. Examples of stable storage include
battery-backed memory and transaction logs. The recommended way to perform
this is by using a service call to hyperprivileged software. Alternatively, this can
be done by a displacement flush (see the next section). Flushing the L2 cache
flushes the corresponding blocks from the I- and D-caches, because UltraSPARC
T2 maintains inclusion between the L2 and L1 caches.

D.2.1 Displacement Flushing
Cache flushing of the L2 cache or the D-cache can be accomplished by a
displacement flush. This is done by placing the cache in direct-map mode, and
reading a range of read-only addresses that map to the corresponding cache line
being flushed, forcing out modified entries in the local cache. Care must be taken to
ensure that the range of read-only addresses is mapped in the MMU before starting
a displacement flush; otherwise, the TLB miss handler may put new data into the
caches. In addition, the range of addresses used to force lines out of the cache must
not be present in the cache when starting the displacement flush. (If any of the
displacing lines are present before starting the displacement flush, fetching the
already present line will not cause the proper way in the direct-mapped mode L2 to
be loaded; instead, the already present line will stay at its current location in the
cache.)

D.2.2 Memory Accesses and Cacheability

In UltraSPARC T2, all memory accesses are cached in the L2 cache (as long as the L2
cache is enabled). The cp bit in the TTE corresponding to the access controls whether
the memory access will be cached in the primary caches (if cp = 1, the access is
cached in the primary caches; if cp = 0 the access is not cached in the primary
caches). Atomic operations are always performed at the L2 cache.

D.2.3 Coherence Domains
Two types of memory operations are supported in UltraSPARC T2: cacheable and
noncacheable accesses, as indicated by the page translation. Cacheable accesses are
inside the coherence domain; noncacheable accesses are outside the coherence
domain.

SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses. UltraSPARC T2 maintains TSO ordering, regardless of the cacheability of
the accesses, relative to other access by processors. (Ordering of processor accesses
relative to DMA accesses roughly follows PCI ordering rules.)

Note Atomic load-store instructions are treated as both a load and a
store; they can be performed only in cacheable address spaces.
120 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

See the The SPARC Architecture Manual-Version 9 for more information about the
SPARC V9 memory models.

On UltraSPARC T2, a MEMBAR #Lookaside is effectively a NOP and is not
needed for forcing order of stores vs. loads to noncacheable addresses.

D.2.3.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses. They
are implemented in UltraSPARC T2 with the following properties:

■ Data resides in real memory locations.

■ They observe the supported cache coherence protocol.

■ The unit of coherence is 64 bytes at the system level (coherence between the
virtual processors and I/O), enforced by the L2 cache.

■ The unit of coherence for the primary caches (coherence between multiple virtual
processors) is the primary cache line size (16 bytes for the data cache, 32 bytes for
the instruction cache), enforced by the L2 cache directories.

D.2.3.2 Noncacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.
Accesses of some of these memory (or memory mapped) locations may result in side
effects. Noncacheable accesses are implemented in UltraSPARC T2 with the
following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side effects; for example, memory-
mapped I/O control registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.

Noncacheable accesses are all strongly ordered with respect to other noncacheable
accesses (regardless of the e bit). Speculative loads with the e bit set cause a
DAE_so_page trap.

Note The side-effect attribute does not imply noncacheability.
• 121

D.2.3.3 Global Visibility and Memory Ordering

To ensure the correct ordering between the cacheable and noncacheable domains,
explicit memory synchronization is needed in the form of MEMBARs or atomic
instructions. CODE EXAMPLE D-1 illustrates the issues involved in mixing cacheable
and noncacheable accesses.

CODE EXAMPLE D-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:
While (1)
{

Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag
While F1 is set (spin on flag)
Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

 Load D2
}

Process B:
While (1)
{

 While F1 is cleared (spin on flag)

 Load F1
2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

 Load D1

 Store D2
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag
}

Note A MEMBAR #MemIssue or MEMBAR #Sync is needed if
ordering of cacheable accesses following noncacheable accesses
must be maintained for RMO cacheable accesses.
122 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Due to load and store buffers implemented in UltraSPARC T2, CODE EXAMPLE D-1
may not work for RMO accesses without the MEMBARs shown in the program
segment.

Under TSO, loads and stores (except block stores) cannot pass earlier loads, and
stores cannot pass earlier stores; therefore, no MEMBAR is needed.

Under RMO, there is no implicit ordering between memory accesses; therefore, the
MEMBARs at both #1 and #2 are needed.

D.2.4 Memory Synchronization: MEMBAR and FLUSH
The MEMBAR (STBAR in SPARC V8) and FLUSH instructions provide for explicit
control of memory ordering in program execution. MEMBAR has several variations;
their implementations in UltraSPARC T2 are described below. See the references to
“Memory Barrier,” “The MEMBAR Instruction,” and “Programming With the
Memory Models,” in The The SPARC Architecture Manual-Version 9 for more
information.

D.2.4.1 MEMBAR #LoadLoad

All loads on UltraSPARC T2 switch a strand out until the load completes. Thus,
MEMBAR #LoadLoad is treated as a NOP on UltraSPARC T2.

D.2.4.2 MEMBAR #StoreLoad

MEMBAR #StoreLoad forces all loads after the MEMBAR to wait until all stores
before the MEMBAR have reached global visibility. MEMBAR #StoreLoad behaves
the same as MEMBAR #Sync on UltraSPARC T2.

D.2.4.3 MEMBAR #LoadStore

All loads on UltraSPARC T2 switch a strand out until the load completes. Thus,
MEMBAR #LoadStore is treated as a NOP on UltraSPARC T2

D.2.4.4 MEMBAR #StoreStore and STBAR

Stores on UltraSPARC T2 maintain order in the store buffer. Thus Membar
#StoreStore is treated as a NOP on UltraSPARC T2.
• 123

D.2.4.5 MEMBAR #Lookaside

Loads and stores to noncacheable addresses are “self-synchronizing” on UltraSPARC
T2. Thus MEMBAR #Lookaside is treated as a NOP on UltraSPARC T2.

D.2.4.6 MEMBAR #MemIssue

MEMBAR #MemIssue forces all outstanding memory accesses to be completed before
any memory access instruction after the MEMBAR is issued. It must be used to
guarantee ordering of cacheable accesses following noncacheable accesses. For
example, I/O accesses must be followed by a MEMBAR #MemIssue before
subsequent cacheable stores; this ensures that the I/O accesses reach global visibility
(as viewed by other strands) before the cacheable stores after the MEMBAR.

Since loads are already self-synchronizing, Membar #MemIssue just needs to drain
the store buffer (and receive all the store ACKs) before allowing memory operations
to issue again. This is the same operation as UltraSPARC T2’s Membar #Sync.

D.2.4.7 MEMBAR #Sync (Issue Barrier)

Membar #Sync forces all outstanding instructions and all deferred errors to be
completed before any instructions after the MEMBAR are issued.

D.2.4.8 Self-Modifying Code (FLUSH)

The SPARC V9 instruction set architecture does not guarantee consistency between
code and data spaces. A problem arises when code space is dynamically modified by
a program writing to memory locations containing instructions. Dynamic

Notes STBAR has the same semantics as MEMBAR #StoreStore; it is
included for SPARC-V8 compatibility.

UltraSPARC T2 block stores and block-init stores are RMO. If a
program needs to maintain order between RMO stores to
different L2 cache lines, it should use a MEMBAR #Sync.

Note For SPARC V9 compatibility, this variation should be used
before issuing a load to an address space that cannot be
snooped,

Note MEMBAR #Sync is a costly instruction; unnecessary usage may
result in substantial performance degradation.
124 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

optimizers, LISP programs, and dynamic linking require this behavior. SPARC V9
provides the FLUSH instruction to synchronize instruction and data memory after
code space has been modified.

In UltraSPARC T2, FLUSH behaves like a store instruction for the purpose of
memory ordering. In addition, all instruction fetch (or prefetch) buffers are
invalidated. The issue of the FLUSH instruction is delayed until previous (cacheable)
stores are completed. Instruction fetch (or prefetch) resumes at the instruction
immediately after the FLUSH.

D.2.5 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion. These
instructions behave like both a load and a store but the operations are carried out
indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in unprivileged mode (PSTATE.priv = 0)
causes a privileged_action trap. An atomic access with a noncacheable address
causes a DAE_nc_page trap. An atomic access with an unsupported ASI causes a
DAE_invalid_ASI trap. TABLE D-1 lists the ASIs that support atomic accesses.

D.2.5.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent
loads interlock on earlier SWAPs.

TABLE D-1 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name

ASI_NUCLEUS{_LITTLE}

ASI_AS_IF_USER_PRIMARY{_LITTLE}

ASI_AS_IF_USER_SECONDARY{_LITTLE}

ASI_PRIMARY{_LITTLE}

ASI_SECONDARY{_LITTLE}

ASI_REAL{_LITTLE}

Notes Atomic accesses with nonfaulting ASIs are not allowed, because
these ASIs have the load-only attribute.

For all atomics, allocation is done to the L2 cache only and will
invalidate the L1s.
• 125

D.2.5.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer
register and atomically writes all 1’s (FF16) into the addressed byte.

D.2.5.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic
instruction. It compares the value in an integer register to a value in memory; if they
are equal, the value in memory is swapped with the contents of a second integer
register. All of these operations are carried out atomically; in other words, no other
memory operation may be applied to the addressed memory location until the entire
compare-and-swap sequence is completed.

D.2.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, except that

■ It does not allow side-effect access. An access with the e bit set causes a
DAE_so_page trap.

■ It can be applied to a page with the nfo bit set; other types of accesses will cause
a DAE_NFO_page trap.

Nonfaulting loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a
DAE_invalid_ASI trap.

When a nonfaulting load encounters a TLB miss, the operating system should
attempt to translate the page. If the translation results in an error (for example,
address out of range), a 0 is returned and the load completes silently.

Typically, optimizers use nonfaulting loads to move loads before conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, to hide latency; it allows for
more flexibility in code scheduling. It also allows for improved performance in
certain algorithms by removing address checking from the critical code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a read-ahead fashion if the operating system can ensure that
the page at virtual address 016 is accessed with no penalty. The nfo (nonfault access
only) bit in the MMU marks pages that are mapped for safe access by nonfaulting
loads but can still cause a trap by other, normal accesses. This allows programmers
to trap on wild pointer references (many programmers count on an exception being
generated when accessing address 016 to debug code) while benefitting from the
acceleration of nonfaulting access in debugged library routines.
126 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX E

Glossary

This chapter defines concepts and terminology unique to the UltraSPARC T2
implementation. Definitions of terms common to all UltraSPARC Architecture
implementations may be found in the Definitions chapter of UltraSPARC Architecture
2007.

ALU Arithmetic Logical Unit

architectural state Software-visible registers and memory (including caches).

ARF Architectural register file.

blocking ASI An ASI access that accesses its ASI register or array location once all older
instructions in that strand have retired, no instructions in the other strand can
issue, and the store queue, TSW, and LMB are all empty.

branch outcome A reference as to whether or not a branch instruction will alter the flow of
execution from the sequential path. A taken branch outcome results in
execution proceeding with the instruction at the branch target; a not-taken
branch outcome results in execution proceeding with the instruction along the
sequential path after the branch.

branch resolution A branch is said to be resolved when the result (that is, the branch outcome
and branch target address) has been computed and is known for certain.
Branch resolution can take place late in the pipeline.

branch target address The address of the instruction to be executed if the branch is taken.

commit An instruction commits when it modifies architectural state.

complex instruction A complex instruction is an instruction that requires the creation of secondary
“helper” instructions for normal operation, excluding trap conditions such as
spill/fill traps (which use helpers). Refer toInstruction Latency on page 88 for a
complete list of all complex instructions and their helper sequences.

consistency See coherence.

CPU Central Processing Unit. A synonym for virtual processor.

CSR Control Status register.

FP Floating point.
127

L2C (or L2$) Level 2 cache.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

nonblocking ASI A nonblocking ASI access will access its ASI register/array location once all
older instructions in that strand have retired, and there are no instructions in
the other strand which can issue.

older instruction Refers to the relative fetch order of instructions. Instruction i is older than
instruction j if instruction i was fetched before instruction j. Data dependencies
flow from older instructions to younger instructions, and an instruction can
only be dependent upon older instructions.

one hot An n-bit binary signal is one hot if and only if n − 1 of the bits are each zero
and a single bit is a 1.

quadlet

SIAM Set interval arithmetic mode instruction.

younger instruction See older instruction.

writeback The process of writing a dirty cache line back to memory before it is refilled.
128 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

APPENDIX F

Bibliography

[contents of this appendix are TBD]
129

130 UltraSPARC T2 Supplement • Draft D1.4.2, 01 Aug 2007

Index
A
Accumulated Exception (aexc) field of FSR

register, 68
Address Mask (am)

field of PSTATE register, 46, 64, 76, 79
address space identifier (ASI)

identifying memory location, 41
ASI

restricted, 79
support for atomic instructions, 125
usage, 47–53

ASI, See address space identifier (ASI)
ASI_AS_IF_USER_PRIMARY, 78
ASI_AS_IF_USER_SECONDARY, 78
ASI_BLK_INIT_ST_PRIMARY, 28
ASI_BLK_INIT_ST_PRIMARY_LITTLE, 28
ASI_BLK_INIT_ST_SECONDARY, 28
ASI_BLK_INIT_ST_SECONDARY_LITTLE, 28
ASI_NUCLEUS, 78
ASI_PRIMARY_NO_FAULT, 74, 77, 78, 79
ASI_PRIMARY_NO_FAULT_LITTLE, 74, 77, 79
ASI_QUEUE registers, 37–39
ASI_REAL, 53
ASI_REAL_IO, 53
ASI_REAL_IO_LITTLE, 53
ASI_REAL_LITTLE, 53
ASI_SCRATCHPAD, 53
ASI_SECONDARY_NO_FAULT, 74, 77, 78, 79
ASI_SECONDARY_NO_FAULT_LITTLE, 74, 77, 79
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY, 28
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY_LIT

TLE, 28
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY, 2

8
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY_L

ITTLE, 28
ASI_ST_BLKINIT_NUCLEUS, 28
ASI_ST_BLKINIT_NUCLEUS_LITTLE, 28
ASI_STBI_AIUP, 28
ASI_STBI_AIUPL, 28
ASI_STBI_AIUS, 28
ASI_STBI_AIUS_L, 28
ASI_STBI_N, 28
ASI_STBI_NL, 28
ASI_STBI_P, 28
ASI_STBI_PL, 28
ASI_STBI_S, 28
ASI_STBI_SL, 28
atomic instructions, 125–126

B
block

load instructions, 25, 28
memory operations, 71
store instructions, 25

block-initializing ASIs, 28
branch instruction, 46

C
cache flushing, when required, 119
cacheable in indexed cache (cp, cv) fields of TTE, 74
caching

TSB, 75
CALL instruction, 46
CANRESTORE register, 65
131

CANSAVE register, 65
clean window, 65
clean_window exception, 65
CLEANWIN register, 65
compatibility with SPARC V9

terminology and concepts, 127
context

field of TTE, 73
counter overflow, 60
Current Exception (cexc) field of FSR register, 68
CWP register, 65

D
DAE_invalid_ASI exception, 69, 84, 125
DAE_invalid_asi exception, 47
DAE_nc_page exception, 125
DAE_privilege_violation exception, 75
DAE_so_page, 121
Dcache

displacement flush, 120
flushing, 119

deferred
trap, 64

Dirty Lower (dl) field of FPRS register, 67
Dirty Upper (du) field of FPRS register, 67
D-MMU, 78

E
endianness, 74
enhanced security environment, 64
errors

See also individual error entries
extended

instructions, 72

F
floating point

deferred trap queue (fq), 68
exception handling, 66

Floating Point Registers State (FPRS) register, 67
FLUSH instruction, 69

G
global level register, See GL register
Graphics Status register, See GSR

H
hardware_error floating-point trap type, 68

I
IAE_privilege_violation exception, 75
Icache

flushing, 119
IEEE Std 754-1985, 68
IEEE support

inexact exceptions, 105
infinity arithmetic, 98
NaN arithmetic, 104
normal operands/subnormal result, 113
one infinity operand arithmetic, 98
one/both subnormal operands, 110
subnormal support in hardware, 106
two infinity operand arithmetic, 101
zero arithmetic, 103

illegal_instruction exception, 63, 68, 70, 72
ILLTRAP instructions, 63
implementation-dependent instructions, See

IMPDEP2A instructions
instruction fetching

near VA (RA) hole, 45
instruction latencies, 88–95
instruction-level parallelism

advantages, 2
history, 1

instruction-level parallelism, See ILP
integer

division, 65
multiplication, 65
register file, 65

interrupt
hardware delivery mechanism, 37

invalid_fp_register floating-point trap type, 68
invert endianness, (ie) field of TTE, 74
ISA, See instruction set architecture

J
JMPL instruction, 46
jump and link, See JMPL instruction

L
L2 cache

configuration, 4
132 UltraSPARC T2 Processor Supplement • Draft 1.4.2, 01 Aug 2007

displacement flush, 120
flushing, 120

LDBLOCKF instruction, 25
LDD instruction, 70
LDDF_mem_address_not_aligned exception, 70
LDQF instruction, 70
LDQFA instruction, 70
LDXA instruction, 47
load

block, See block load instructions
short floating-point, See short floating-point load

instructions

M
mem_address_not_aligned exception, 77, 84
MEMBAR #LoadLoad, 42
MEMBAR #Lookaside, 42, 43
MEMBAR #MemIssue, 43, 122
MEMBAR #StoreLoad, 26, 42
MEMBAR #StoreStore, 69
MEMBAR #Sync, 84
MEMBAR #Sync, 122
memory

cacheable and noncacheable accesses, 120
location identification, 41
model, 27
noncacheable accesses, 121
order between references, 43
ordering in program execution, 123–125

memory models, 41
MMU

requirements, compliance with SPARC V9, 83

N
N_REG_WINDOWS, 65
NCU

function, 4
nested traps

in SPARC-V9, 63
No-Fault Only (nfo) field of TTE, 74, 79
nonfaulting loads, 126

speculative, 77
Nucleus Context register, 86

O
OTHERWIN register, 65

out of range
virtual address, 45, 46
virtual address, as target of JMPL or

RETURN, 46
virtual addresses, during STXA, 84

P
page

size field of TTE, 75
size, encoding in TTE, 75

partial store
instruction, 71

Partial Store Order (PSO), 41
pcontext field, 85
PCR register

fields, 56
performance instrumentation counter register, See

PIC register
physical core

components, 3
UltraSPARC T2 microarchitecture, 3

PIC register
field description, 60
overflow traps, 55

precise traps, 64
PREFETCHA instruction, 69
Primary Context register, 85
privileged

(p) field of TTE, 75
(priv) field of PSTATE register, 75, 76, 77

privileged_action exception
attempting access with restricted ASI, 41, 77, 79

privileged_opcode exception, 55
processor

memory model, 27
processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states, See execute_state
PSTATE register fields

ie
masking disrupting trap, 33

pef
See also pef field of PSTATE register

PTE (page table entry), See translation table entry
(TTE)
133

Q
quad-precision floating-point instructions, 67

R
RA hole, 45
real page number (ra) field of TTE, 74
Relaxed Memory Order (RMO), 41, 42
reserved

fields in opcodes, 63
instructions, 63

resumable_error exception, 37
RETURN instruction, 46
RMO, See relaxed memory order (RMO) memory

model

S
SAVE instruction, 65
scontext field, 85
Secondary Context register, 85
secure environment, 64
self-modifying code, 69
short floating point

load instruction, 71
store instruction, 71

side effect
field of TTE, 74

SIU
function, 4

sl0/sl1 field settings of PCR register, 57
software

defined fields of TTE, 74
Translation Table, 69, 75

software-defined field (soft) of TTE, 74
SPARC V9

compliance with, 63
speculative load, 77
SSI

function, 5
STBLOCKF instruction, 25
STD instruction, 70
STDF_mem_address_not_aligned exception, 70
STQF instruction, 70
STQFA instruction, 70
strand instructions

available-to-unavailable change
speculation enabled, 87
speculation not enabled, 88

STXA instruction, 47
supervisor interrupt queues, 37

T
TBA register, 46
terminology for SPARC V9, definition of, 127
thread-level parallelism

advantages, 2
background, 2
differences from instruction-level parallelism, 2

thread-level parallelism, See TLP
Throughput Computing, 1
TNPC register, 46
Total Store Order (TSO), 41, 42
TPC register, 46
Translation Table Entry see TTE
Translation Table Entry, See TTE
trap

mask behavior, 34–35
stack, 64
state registers, 63

Trap Enable Mask (tem) field of FSR register, 68
trap level register, See TL register
trap next program counter register, See TNPC register
trap program counter register, See TPC register
trap stack array, See TSA
trap state register, See TSTATE register
trap type register, See TT register
Trap-on-Event (toe) field of PCR register, 56
traps

See also exceptions and individual trap names
TSB

caching, 75
index to smallest, 73
in-memory, 69
organization, 76

TSO, See total store order (TSO) memory model
tstate, See trap state (TSTATE) register
TTE, 73

U
UltraSPARC T1 vs. UltraSPARC T2

instruction set architecture, 115
microarchitecture, 115
MMUs, 116
performance events captured by the

hardware, 117
134 UltraSPARC T2 Processor Supplement • Draft 1.4.2, 01 Aug 2007

UltraSPARC T2
architecture, 3
background, 1
extended instructions, 72
internal registers, 78
memory branches, 4
memory model supported, 41
minimum single-strand instruction

latencies, 88–95
unimplemented instructions, 63

V
VA hole, 45
VA_tag field of TTE, 73
Valid (v) field of TTE, 74
virtual address

space illustrated, 46
Visual Instruction Set, See VIS instructions

W
window fill exception, See also fill_n_normal

exception
window spill exception, See also spill_n_normal

exception
writable (w) field of TTE, 75
135

136 UltraSPARC T2 Processor Supplement • Draft 1.4.2, 01 Aug 2007

	UltraSPARC T2™ Supplement to the UltraSPARC Architecture 2007
	A Programming Guidelines 87
	B IEEE 754 Floating-Point Support 97
	C Differences From UltraSPARC T1 115
	D Caches and Cache Coherency 119
	E Glossary 127
	F Bibliography 129

	UltraSPARC T2 Basics
	1.1 Background
	1.2 UltraSPARC T2 Overview
	1.3 UltraSPARC T2 Components
	1.3.1 SPARC Physical Core
	1.3.2 L2 Cache
	1.3.3 Memory Controller Unit (MCU)
	1.3.4 Noncacheable Unit (NCU)
	1.3.5 System Interface Unit (SIU)
	1.3.6 SSI ROM Interface (SSI)

	Data Formats
	Registers
	3.1 Ancillary State Registers (ASRs)
	3.1.1 Tick Register (tick)
	3.1.2 Program Counter (pc)
	3.1.3 Floating-Point State Register (fSr)
	3.1.4 General Status Register (gsr)
	3.1.5 Software Interrupt Register (softint)
	3.1.6 Tick Compare Register (tick_cmpr)
	3.1.7 System Tick Register (stick)
	3.1.8 System Tick Compare Register (stick_cmpr)

	3.2 Privileged PR State Registers
	3.2.1 Trap State Register (tstate)
	3.2.2 Processor State Register (pstate)
	3.2.3 Trap Level Register (tl)
	3.2.4 Current Window Pointer (cwp) Register
	3.2.5 Global Level Register (gl)

	Instruction Format
	Instruction Definitions
	5.1 Instruction Set Summary
	5.2 UltraSPARC T2-Specific Instructions
	5.3 Block Load and Store Instructions

	Traps
	6.1 Trap Levels
	6.2 Trap Behavior
	6.3 Trap Masking

	Interrupt Handling
	7.1 CPU Interrupt Registers
	7.1.1 Interrupt Queue Registers

	Memory Models
	8.1 Supported Memory Models
	8.1.1 TSO
	8.1.2 RMO

	Address Spaces and ASIs
	9.1 Address Spaces
	9.1.1 48-bit Virtual and Real Address Spaces

	9.2 Alternate Address Spaces
	9.2.1 ASI_REAL, ASI_REAL_LITTLE, ASI_REAL_IO, and ASI_REAL_IO_LITTLE
	9.2.2 ASI_SCRATCHPAD

	Performance Instrumentation
	10.1 SPARC Performance Control Register
	10.2 SPARC Performance Instrumentation Counter

	Implementation Dependencies
	11.1 SPARC V9 General Information
	11.1.1 Level-2 Compliance (Impdep #1)
	11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
	11.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)
	11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)
	11.1.5 Secure Software
	11.1.6 Operation in Nonprivileged Mode with tl > 0
	11.1.7 Address Masking (Impdep #125)

	11.2 SPARC V9 Integer Operations
	11.2.1 Integer Register File and Window Control Registers (Impdep #2)
	11.2.2 Clean Window Handling (Impdep #102)
	11.2.3 Integer Multiply and Divide
	11.2.4 MULScc

	11.3 SPARC V9 Floating-Point Operations
	11.3.1 Subnormal Operands and Results; Nonstandard Operation
	11.3.2 Overflow, Underflow, and Inexact Traps (Impdep #3, 55)
	11.3.3 Quad-Precision Floating-Point Operations (Impdep #3)
	11.3.4 Floating-Point Upper and Lower Dirty Bits in fprs Register
	11.3.5 Floating-Point Status Register (fsr) (Impdep #13, 19, 22, 23, 24)

	11.4 SPARC V9 Memory-Related Operations
	11.4.1 Load/Store Alternate Address Space (Impdep #5, 29, 30)
	11.4.2 Read/Write ASR (Impdep #6, 7, 8, 9, 47, 48)
	11.4.3 MMU Implementation (Impdep #41)
	11.4.4 FLUSH and Self-Modifying Code (Impdep #122)
	11.4.5 PREFETCH{A} (Impdep #103, 117)
	11.4.6 LDD/STD Handling (Impdep #107, 108)
	11.4.7 FP mem_address_not_aligned (Impdep #109, 110, 111, 112)
	11.4.8 Supported Memory Models (Impdep #113, 121)
	11.4.9 Implicit ASI When tl > 0 (Impdep #124)

	11.5 Non-SPARC V9 Extensions
	11.5.1 Cache Subsystem
	11.5.2 Block Memory Operations
	11.5.3 Partial Stores
	11.5.4 Short Floating-Point Loads and Stores
	11.5.5 Load Twin Extended Word
	11.5.6 UltraSPARC T2 Instruction Set Extensions (Impdep #106)
	11.5.7 Performance Instrumentation

	Memory Management Unit
	12.1 Translation Table Entry (TTE)
	12.2 Translation Storage Buffer (TSB)
	12.3 MMU-Related Faults and Traps
	12.3.1 IAE_privilege_violation Trap
	12.3.2 IAE_nfo_page Trap
	12.3.3 instruction_address_range Trap
	12.3.4 instruction_real_range Trap
	12.3.5 DAE_privilege_violation Trap
	12.3.6 DAE_side_effect_page Trap
	12.3.7 DAE_nc_page Trap
	12.3.8 DAE_invalid_asi Trap
	12.3.9 DAE_nfo_page Trap
	12.3.10 privileged_action Trap
	12.3.11 *_mem_address_not_aligned Traps

	12.4 MMU Operation Summary
	12.5 Translation
	12.5.1 Instruction Translation
	12.5.1.1 Instruction Prefetching

	12.5.2 Data Translation

	12.6 Compliance With the SPARC V9 Annex F
	12.7 MMU Internal Registers and ASI Operations
	12.7.1 Accessing MMU Registers
	12.7.2 Context Registers

	Programming Guidelines
	A.1 Multithreading
	A.2 Instruction Latency

	IEEE 754 Floating-Point Support
	B.1 Special Operand Handling
	B.1.1 Infinity Arithmetic
	B.1.1.1 One Infinity Operand Arithmetic
	B.1.1.2 Two Infinity Operand Arithmetic

	B.1.2 Zero Arithmetic
	B.1.3 NaN Arithmetic
	B.1.4 Special Inexact Exceptions

	B.2 Subnormal Handling
	B.2.1 One or Both Subnormal Operands
	B.2.2 Normal Operand(s) Giving Subnormal Result

	Differences From UltraSPARC T1
	C.1 General Architectural and Microarchitectural Differences
	C.2 ISA Differences
	C.3 MMU Differences
	C.4 Performance Instrumentation Differences

	Caches and Cache Coherency
	D.1 Cache and Memory Interactions
	D.2 Cache Flushing
	D.2.1 Displacement Flushing
	D.2.2 Memory Accesses and Cacheability
	D.2.3 Coherence Domains
	D.2.3.1 Cacheable Accesses
	D.2.3.2 Noncacheable and Side-Effect Accesses
	D.2.3.3 Global Visibility and Memory Ordering

	D.2.4 Memory Synchronization: MEMBAR and FLUSH
	D.2.4.1 MEMBAR #LoadLoad
	D.2.4.2 MEMBAR #StoreLoad
	D.2.4.3 MEMBAR #LoadStore
	D.2.4.4 MEMBAR #StoreStore and STBAR
	D.2.4.5 MEMBAR #Lookaside
	D.2.4.6 MEMBAR #MemIssue
	D.2.4.7 MEMBAR #Sync (Issue Barrier)
	D.2.4.8 Self-Modifying Code (FLUSH)

	D.2.5 Atomic Operations
	D.2.5.1 SWAP Instruction
	D.2.5.2 LDSTUB Instruction
	D.2.5.3 Compare and Swap (CASX) Instruction

	D.2.6 Nonfaulting Load

	Glossary
	Bibliography
	Index

